Cytometry Past, Present, and Future

USWNet 2012 Conference, Lund, Sweden

Diether Recktenwald BD Biosciences San Jose, CA 95131, USA

Diether.Recktenwald@bd.com Diether.Recktenwald@CytometryGroup.org

Outline

- History
- Flow Cytometry and Imaging Principles
- Important applications
- New developments
- Opportunities for Acoustic Science
- Outlook
- Summary and Conclusions

History of Cytometry Technologies (Microscopy)

- •1665 English physicist, Robert Hooke used a microscope lens to observe "pores" in cork
- 1674 Anton van Leeuwenhoek built a simple microscope with only one lens to examine blood cells
- •1872 Ernst Abbe calculated the maximum resolution in microscopes
- •1932 Frits Zernike invented the phase-contrast microscope (label-free observations)
- •1969 Willard Boyle and George E. Smith at Bell laboratories invented the CCD
- •1971 Intel launches 4-bit 4004 microprocessor

History of Cytometry Technologies (Flow Cytometry)

1968 1st fluorescence-based flow cytometry device (ICP 11) by Prof. Göhde from the University of Münster, Germany, and first commercialized in 1968/69 by German developer and manufacturer Partec through Phywe AG in Göttingen.

- 1971 Cytofluorograph, Ortho
- 1973 PAS 8000, Partec
- 1974 1st FACS instrument, BD
- 1977 Epics Instrument, Coulter
- 2002 Microfluidic Cytometer, Quake, Caltech

Flow and Imaging Cytometry Features

Single cell analysis with

• High sensitivity (single molecule sensitivity by fluorescence) I,F Wide dynamic range (10^3 to 10^7 cells mL⁻¹) F High analysis rates to ~10⁵ particles sec⁻¹ F Light scatter F Direct size and 3D spatial information Multi-color fluorescence, multi-parameter analysis I,F Direct kinetic measurements Live/dead discrimination I,F Viable cells can be re-covered F,(I) Measurement of adherent cells Good ease-of-use F,(I)

Physical Parameters used for Cytometry

- Light scatter
- Absorbance
- Fluorescence
- Phosphorescence
- Raman
- Electrical properties
- Mechanical properties
- Element mass

http://www.dvssciences.com/technical.html

Flow Cytometer Fluidics

CD-ROM Vol 3 Purdue University Cytometry Laboratories

"Droplet-based" Sorting

Basic Data Processing

Cell	P1	P2	P 3	P4	P5	Pop#
1	242	135	704	175	612	. 1
2	146	132	690	178	566	1
3	269	147	89	206	580	3
4	442	143	399	250	255	4
5	212	167	155	926	526	2
6	269	2	659	207	575	1
7	204	232	112	171	679	3
8	152	74	160	828	532	2
9997	215	119	138	936	662	2
9998	244	50	72	261	543	3
9999	214	137	174	1014	597	2
10000	312	87	110	904	560	2

"Dotplot"

Single Cell Cytometry vs. Bulk Analysis

Cell by cell intensity analysis detects population heterogeneity.

Single Cell Cytometry vs. Bulk Analysis

Coutesy Dr. Ji

Instrument Evaluation Br

Relative B (Br) is a measure of true optical background in the fluorescence detector.

Source: Joseph Trotter

Instrument Evaluation Qr

Source: Joseph Trotter

Optimizing cytometry measurements

Background light

 Dye properties (brightness and spectral overlap)

http://www.dvssciences.com/technical.html

Source: Joseph Trotter

Quantitative Multi-color Microscopy

Additional factors

- Field to field focus
- Photobleaching

Differential Photobleaching in Multiply-Stained Tissues

Images from

http://micro.magnet.fsu.edu/ primer/index.html

Key Applications

- Immunology Research
- Stem Cell Biology
- Clinical Diagnostics
 - Immune status
 - Tumor Cell Cycle
- Cell Sorting
 - Single cell genomics
 - Cell population proteomics
 - Cloning for research and industrial biotechnology
- Marker quantitation
- Molecule counting
- In-vivo molecular analysis

Single Cell Sorting for PCR

Nucleic Acid Amplification - Highest sensitivity down to ONE single cell

FACS sorting of single cells onto a slide followed by automated miniaturized single cell PCR (Advalytix).

Source: Advalytix

Sorting for Cell Surface Proteomics

Cell surface proteome by FACS sorting, followed by LC MS

(in collaboration with Thermo Finnigan, San Jose, CA)

The dot plots show the sorting strategy used for stained peripheral blood cells and population purity after sorting for CD4- and CD8-positive cells, CD4 cells were gated on scatter and FITC fluorescence; CD8 bright cells were gated on scatter and RPE fluorescence. Sorted populations showed >95% purity.

Peptide mixtures were separated by reverse phase HPLC (A) as described in Methods. Eluted peptides were subjected to electrospray injection into the mass spectrometer and analyzed for their mass/charge ratio (m/z value) (B). Selected ions were collected in the ion trap. These parent ions were cacked by collision ion dissociation to produce a range of fragment sizes (C) that were compared to predicted peptide sequences in the human database using TurboSequest (D).

Quantitative Multi-Parameter Microscopy

Selected capabilities

- Intensity calibration by volume exclusion
- Single molecule observation
- Low complexity, low resolution cytometry
 (Shapiro H, "Cellular Astronomy")

Single m-RNA molecule analysis. Robert H Singer's group, Nature S&MB 2008

Rodriguez WR, McDavitt JT, PLoi: Maderina 2006, (CDD+CD4+ yallow, CDD+CD8+ ind, monocrytax green

Intra-vital Cytometry

Single cell analysis in living animals

Flow cytometry in blood vessels

2010, Zharov VP and coworkers

Microscopy

2011, Runnels JM et al; homing of multiple myeloma cells in bone marrow

Signals from

- 2-photon fluorescence
- bioluminescence
- photo-acoustic effect
- . . .

Review paper: Niesner RA, Cytometry 79A (2011)

New Developments

- Labels
 - High brightness fluorescent labels
 - Raman labels
- Light sources
 - Solid state lasers
 - LEDs
- Detectors
 - Photomultiplier arrays
 - CMOS
- Fluidics
 - Microfluidic channels for manipulating particles

Bright Fluorescent Polymer Dyes

Polymer Based Fluorochromes

BV421™

1.2

1

0.8

0.6

0.4

0.2

Normalized signal intensity, au

FITC

500

450

550 600

Wavelength, nm

- Well defined synthetic organic polymer structures
 - Single conjugation site, defined size, etc.
- Backbone comprised of π-conjugated repeat units
 - Affords massive light harvesting (ε > 10⁶) materials with high quantum yields

DL633

 Tunable architecture adapted for low NSB, high aqueous solubility and spectral performance

DL594

650

700

750

Brilliant Violet Tandems

- Provides a wider range of colors spanning the visible spectrum
 - >6 unique colors validated
- Chemically controlled ratio of donor/acceptor provides:
 - Reproducible performance
 - Low (<5%) compensation at 450nm

Brilliant Violet 421™

- PE level performance w/ 405nm Laser
- >10x the Stain Index of Pacific Blue
- Enables detection of low abundance targets in multicolor assay panels (e.g. CD56, CD127, etc.)
- Wide range of Ab clones validated

www.sirigen.com

New Developments for Multi-parameter Cytometry

- Element-Label Flow Cytometry (CyTOF, addresses fluorescence spectral overlap issue by using elements as labels, Anal. Chem., 2009, 81 (16), pp 6813–6822)
- SERS-Label Flow Cytometry (uses spectral fine-structure to distinguish labels, Cytometry, 2008, 73A(2), pp 119-128)
- Sequential Stain Destain Cytometry (Cytometry, 2009, 75A(4), pp 362-370)
- Spectral analysis, SONY

CDANING CDR2, CTUA 14-LNA PRINTCRAD*CDING CORS, CORS, CORT,

Microfluidic Analyzer/Sorter Example

Biomedical Inc

Opportunities for Acoustic Science

Sample Preparation

- particle trapping
- particle concentration
- particle washing

Particle/cell sorting

- label free
- special labels

Cell Analysis

- acoustic particle focusing
- acoustic parameters

Cell Washing System

From: Warner, Yu, Blom, Buesink, Lenshof, and Laurell; Improving Flow Cytometric Performance Using Modular In-Line Acoustophoretic Washing; CYTO 2012; Leipzig, Germany; Poster 184

Cell Washing Results

From: Warner, Yu, Blom, Buesink, Lenshof, and Laurell; Improving Flow Cytometric Performance Using Modular In-Line Acoustophoretic Washing; CYTO 2012; Leipzig, Germany; Poster 184

Conclusions Evolving Technologies

Technology developments in fields outside of biology e.g. acoustics, create the basis for new reliable analytical approaches for cell biology / diagnostic medicine.

Automation of critical steps (sample preparation, instrument setup, data analysis) makes cytometry more widely useable.

Acknowledgements

- Brian Warner
- Liping Yu
- Joe Trotter
- Ming Yan
- Mike Brasch
- Ben Verwer
- Maria Jaimes
- Ed Goldberg
- Hrair Kirakossian
- Brent Gaylord
- Sujata Iyer

- Andreas Lenshof (Lund University)
- Thomas Laurell (Lund University)
- Janette Phi (now IntelliCyt)
- Bob Hoffman (retired)
- Ken Davis (retired)
- Bill Godfrey (now Beckmann Coulter)
- Holden Maecker (now Stanford U)
- Collette Rudd (Thermo)

Contact

Diether.Recktenwald@bd.com, Phone: +1-408-954-2191 Diether.Recktenwald@CytometryGroup.org

Backup Slides

Quantitation and Limit of Detection for Particle Fluorescence (routine flow cytometer)

Molecule	#/cell
CD3	8.1 x 10 ⁴
CD4	5.0 x 10 ⁴
CD8	1.4 x 10 ⁵
CD11a	2.7 x 10 ⁴
CD16	7.9 x 10 ⁴
CD18	3.1 x 10 ⁴
CD45	1.9 x 10⁵

Appendix A, Cell Separation Methods and Applications. Marcel Dekker 1998. Recktenwald D and Radbruch A, eds.

Single molecule sensitivity with a special flow cytometer

- A: 200 ms corrected data showing 3 molecules of B-PE
- B: 2645 photon burst areas (backgroundgrey)
- **C,D**: each 256 bin (row) = 25.6 ms data. **C** is B-PE showing single molecules. **D** is H_20 control

(Rob Habbersett & Jim Jett, LANL)

Limit of Detection for Rare Cells

Optimized instrument >0.01%Optimized system $>10^{-7}$

>0.2%

Routine

Gross HJ et al, Cytometry 14 (1993) 519-526 Gross HJ et al, PNAS 92 (1995) 537-541

Fluorescence Microscopy Quantitation

System calibration in number of molecules by volume exclusion fluorescence microscopy

Figure 4. Intensity drop versus volume for four solutions of (R)-phycoerythrin (numbers in parentheses) after slope estimates are coefficients of variation. Inset shows intensity drop over volume versus concentration. Relation is 0.30 CCD units/molecule.

Fluorescence Microscopy Single Molecule Analysis

Single PE molecule microscopy, Verwer, Phi, Recktenwald 1994

Single m-RNA molecule analysis. Robert H Singer's group, Nature S&MB 2008

Fluorescence Microscopy for Low Cost Cytometry

Rodriguez WR, McDevitt JT, PLos Medicine 2005; (CD3+CD4+ yellow, CD3+CD8+ red, monocytes green)