"Flow Cytometry: Past, Present, and Thoughts about the Future"

36th Annual Research Course in Flow Cytometry, Albuquerque, NM, June 13, 2013

> Diether Recktenwald Desatoya LLC Reno NV 89507, USA

Diether@desatoya.com

Biology Research Targets and Tools

Organism

Organ

Tissue

Single Cell

Organelle

MacromoleculeMass spectrometrMass spectrometrTIRF microscopySmall moleculesElectrophoresis

NMR X-ray imaging Ultrasound 2-photon imaging In-vivo cytometry Light microscopy **Electron microscopy** Flow cytometry Cell imaging NA sequencing Mass spectrometry **TIRF** microscopy

Contrast agents Affinity reagents - antibodies - probes Enzyme substrates Labels - absorbance

- fluorescence
- element tags

Sample prep

Outline

- History
- Flow Cytometry and Imaging Principles
- Important applications
- New developments
- New technologies for single cell analysis and sorting
- Outlook
- Summary and Conclusions

The Past

1966 Kamentsky RCS: Four Sensors, Sorting, Auto Sampling and Computer Data Reduction

Two analytic instruments were built and one was delivered to LA Herzenberg at Stanford University 1967

ICP 11 (1969) Distributed by Phywe, Göttingen The first commercial flow cytometer PDP 11 computer

Wallace H. Coulter 1913-1998

History of Cytometry Technologies (Microscopy)

- •1665 English physicist, Robert Hooke used a microscope lens to observe "pores" in cork
- 1674 Anton van Leeuwenhoek built a simple microscope with only one lens to examine blood cells
- •1872 Ernst Abbe calculated the maximum resolution in microscopes
- •1932 Frits Zernike invented the phase-contrast microscope (label-free observations)
- •1969 Willard Boyle and George E. Smith at Bell laboratories invented the CCD
- •1971 Intel launches 4-bit 4004 microprocessor

History of Cytometry Technologies (Flow Cytometry)

1968 1st fluorescence-based flow cytometry device (ICP 11) by Prof. Göhde from the University of Münster, Germany, and first commercialized in 1968/69 by German developer and manufacturer Partec through Phywe AG in Göttingen.

1971 Cytofluorograph, Ortho
1973 PAS 8000, Partec
1974 1st FACS instrument, BD
1977 Epics Instrument,Coulter
2002 Microfluidic Cytometer, Quake, Caltech

The Present

PARTEC

BECKMAN COULTER

Stratedigm

SONY make.believe

. . .

Ω

DVS Sciences

Flow Cytometry Features

Single cell analysis with

- High sensitivity (single molecule sensitivity by fluorescence)
- Wide dynamic range (10³ to 10⁷ cells mL⁻¹)
- High analysis rates to ~10⁵ particles sec⁻¹
- Light scatter
- Multi-color fluorescence, multi-parameter analysis
- Live/dead discrimination
- Viable cells can be re-covered
- Good ease-of-use

Physical Parameters used for Cytometry

- Light scatter
- Absorbance
- Fluorescence
- Phosphorescence
- Raman
- Electrical properties
- Mechanical properties
- Element mass

http://www.dvssciences.com/technical.html

Basic Data Processing

Cell	P1	P2	P3	P4	P5	Pop#
1	242	135	704	175	612	1
2	146	132	690	178	566	1
3	269	147	89	206	580	3
4	442	143	399	250	255	4
5	212	167	155	926	526	2
6	269	2	659	207	575	1
7	204	232	112	171	679	3
8	152	74	160	828	532	2
9997	215	119	138	936	662	2
9998	244	50	72	261	543	3
9999	214	137	174	1014	597	2
10000	312	87	110	904	560	2

- Gating
- Cluster Analysis
- Other Data Anal.

Single Cell Cytometry vs. Bulk Analysis

Cell by cell intensity analysis detects population heterogeneity.

Key Applications

- Immunology Research
- Stem Cell Biology
- Clinical Diagnostics
 - Immune status
 - Tumor Cell Cycle
- Cell Sorting
 - Single cell genomics
 - Cell population proteomics
 - Cloning for research and industrial biotechnology
- Marker quantitation
- Molecule counting
- In-vivo molecular analysis

Single Cell Sorting for PCR

Nucleic Acid Amplification - Highest sensitivity down to ONE single cell

FACS sorting of single cells onto a slide followed by automated miniaturized single cell PCR (Advalytix).

Single Cell Genomics

Single cell analysis reveals heterogeneity, which is masked by averaging, when analyzing groups of cells.

Source: http://www.nanostring.com

Sorting for Cell Surface Proteomics

Cell surface proteome by FACS sorting, followed by LC MS

(in collaboration with Thermo Finnigan, San Jose, CA)

The dot plots show the sorting strategy used for stained peripheral blood cells and population purity after sorting for CD4- and CD8-positive cells. CD4 cells were gated on scatter and FITC fluorescence; CD8 bright cells were gated on scatter and RPE fluorescence. Sorted populations showed >95% purity.

Peptide mixtures were separated by reverse phase HPLC (A) as described in Methods. Eluted peptides were subjected to electrospray injection into the mass spectrometer and analyzed for their mass/charge ratio (m/z value) (B). Selected ions were collected in the ion trap. These parent ions were cacked by collision ion dissociation to produce a range of fragment sizes (C) that were compared to predicted peptide sequences in the human database using TurboSequest (D).

Intra-vital Cytometry

Single cell analysis in living animals

Flow cytometry in blood vessels

2010, Zharov VP and coworkers

Microscopy

2011, Runnels JM et al; homing of multiple myeloma cells in bone marrow

Signals from

- 2-photon fluorescence
- bioluminescence
- photo-acoustic effect
- . . .

Review paper: Niesner RA, Cytometry 79A (2011)

Limit of Detection for Rare Cells

Optimized instrument >0.01% Optimized system >10⁻⁷

>0.2%

Routine

Gross HJ et al, Cytometry 14 (1993) 519-526 Gross HJ et al, PNAS 92 (1995) 537-541

Cell Counting (abs. counts or percentages) Counting Statistics

Ignoring Counting Statistics Can Lead to Erroneous Conclusions

Recent Novel Products

- Labels
 - High brightness fluorescent labels
- Fluidics
 - New particle focusing technologies
- Sorting
 - New single cell sorter
- Systems
 - More parameters

Bright Fluorescent Polymer Dyes

Polymer Based Fluorochromes

- Well defined synthetic organic polymer structures
 - Single conjugation site, defined size, etc.
- Backbone comprised of π-conjugated repeat units
 - Affords massive light harvesting (ε > 10⁶) materials with high quantum yields
- Tunable architecture adapted for low NSB, high aqueous solubility and spectral performance

Brilliant Violet Tandems

- Provides a wider range of colors spanning the visible spectrum
 - >6 unique colors validated
- Chemically controlled ratio of donor/acceptor provides:
 - Reproducible performance
 - Low (<5%) compensation at 450nm

Brilliant Violet 421™

- PE level performance w/ 405nm Laser
- >10x the Stain Index of Pacific Blue
- Enables detection of low abundance targets in multicolor assay panels (e.g. CD56, CD127, etc.)
- Wide range of Ab clones validated

www.sirigen.com

Wavelength, nm

Acoustic Particle Focusing

Laurell T et al 2006, Chem. Soc. Reviews

Single Cell Sorter with Microscopic Detection

Cell movement with dielectric forces. DEPArray Silicon Biosystems, Bologna, IT

Cells are transferred to a special slide with 40,000 "cages". Cells of interest are identified by fluorescence microscopy and sorted by the instrument.

New Developments for Multi-parameter Cytometry

- Element-Label Flow Cytometry (CyTOF, addresses fluorescence spectral overlap issue by using elements as labels, Anal. Chem., 2009, 81 (16), pp 6813–6822)
- SERS-Label Flow Cytometry (uses spectral fine-structure to distinguish labels, Cytometry, 2008, 73A(2), pp 119-128)
- Sequential Stain Destain Cytometry (Cytometry, 2009, 75A(4), pp 362-370)
- Spectral analysis, SONY

activated Thumamonucalls (4%)

CD3+,CD4+,GITR+FaxP3-CD44high,CD62L-,CTLA-,IL4-IL10-,IFNy-TCRab+CD11o-OCR3-CCR5-CCR7Christian Hennig, ChipCytometry Hannover Medical School

Thoughts About the Future

Technology Developments For Changes in Cytometry

- Labels
 - High brightness fluorescent labels ,e.g. polymers, nanoparticles
 - Raman labels
- Light sources
 - Solid state lasers
 - LEDs
- Detectors
 - Photomultiplier arrays
 - CMOS detectors
- Fluidics
 - Microfluidic channels for manipulating particles
- Computing
 - Fast multi-parallel processing

The Future Of:

- Sample Handling and Preparation
- Instrumentation including Calibration
- Cell Sorting
- Reagents
- Software and Algorithms
- Systems

Particle Control for Sample Handling

- Acoustic Forces e.g. UNM, Lund U, ...
- Mechanical Forces e.g. Aviva filters
- Photon Pressure
- Dielectric Forces
- Hydrodynamic forces e.g. Princeton, UCLA

Innovative Sample Preparation

Cyto 2012 poster, Liping Yu et al, GPB and BD Biosciences

Acoustic particle focusing for cell washing

Chip wash

Lyse no wash

Centr. wash

2010, Laurell group, Lund University & Brian Warner, BD Biosciences Instrumentation including Calibration

- Spectral Analysis e.g. SONY
- Raman Labels
- Label-free Analysis
- High speed imaging in flow
- Single molecule sensitivity
- Universal Setup e.g. BD FACSVerse[™]

Label-free Cell Analysis

LEISTER : Axetries Impedance flow cytometry

4 um beads Bacillus cereus Bacillus spores -1 1.5 2 -2 Y amplitude (V) X amplitude (V)

Marco DiBeradino, Leister Axetris

Electrical parameters of living cells (no label required).

Other parameters: fluorescence polarization, fluorescence lifetime, compressibility, ...

High speed imaging in flow

• ImageStream (EM Merck)

 Bahram Jalali group, UCLA

http://www1.ee.ucla.edu/Research -highlights-jalali-4.htm

Single molecule sensitivity with a special flow cytometer

Burst Area

100

Detected Photons

150 200 250

MCS Bins

H2O Blank

50

1000

- A: 200 ms corrected data showing 3 molecules of B-PE
 B: 2645 photon burst
 - areas (backgroundgrey)
 - **C,D**: each 256 bin (row) = 25.6 ms data. **C** is B-PE showing single molecules. **D** is H_20 control

(Rob Habbersett & Jim Jett, LANL)

Cell Sorting

- Optimized position control in droplets
- Specialized microfluidics sorters
- New sorting technologies e.g. OWL

Microfluidic Analyzer/Sorter

Reagents

- Advances in affinity reagents
- New amplification methods for single molecule sensitivity
- More and brighter polymer and nanoparticle dyes
- Concentration measurments by molecule counting

Novel Affinity Reagents

- Antibodies
 - Antibodies from different species (e.g. Llama 15 kDalton fragments with 10⁻⁹M Kd and high stability, potential for intracllular use)
 - Recombinant antibody fragments
 - ...
- Synthetic affinity reagents
 - Aptamers
 - Protein scaffolds
 - Molecular Imprinted Polymers

Recent review: Fodey T et al; Trends in Anal. Chem. 30(2011) 254ff

Use of Brighter Labels

Software and Algorithms/ BioInformatics

Integration, enhancements, and additions to:

- FLOCK
- Gemstone
- Spades
- Cytobank

Systems

- Fully integrated user-programmable research systems
- Fully automated, pre-programmed, validated clinical systems
- •

Advanced Single Cell Analysis in Droplets

Source: RainDance Technologies

Fully Integrated Single Cell Analysis

Source: Raindance Technologies

Conclusion

After more than 30 years, cytometry is at the beginning of new era to enable revolutionary discoveries in biology, higher quality in monitoring of biotechnological processes, and better patient care through clinical diagnostics and cellular therapy.

Acknowledgements

- Joe Trotter
- Brian Warner
- Liping Yu
- Ed Goldberg
- Hrair Kirakossian
- Sujata lyer
- Ming Yan
- Ben Verwer
- Maria Jaimes
- Brent Gaylord all BD

- Bob Hoffman (retired)
- Thomas Laurell (Lund University)
- Janette Phi (now IntelliCyt)
- Ken Davis (retired)
- Bill Godfrey (now Beckmann Coulter)
- Holden Maecker (now Stanford U)
- Collette Rudd (Thermo)
- • •
- BD

Phone: +1-408-658-6074 http://www.desatoya.com Diether.Recktenwald@CytometryGroup.org Diether@Desatoya.com

