Separation of Cell Subpopulations by FCM for Proteome Analysis

Bill Godfrey BD Biosciences Immunocytometry Systems San Jose, CA E-mail: bill_godfrey@bdis.com

BD Biosciences

Clontech Discovery Labware Immunocytometry Systems Pharmingen

Overview

- Current approaches adequate for monotypic cell populations
- Cellular proteome analysis complicated by mixed populations
- Separation of subpopulations focuses analyses on desired targets
- Combine the power of cell separation techniques with mass spectrometry for global proteome analysis

Goals

- Demonstrate power of combining FACS and mass spectrometry in several model systems: lymphocytes, solid tissue, organelles
- Determine sensitivity of protein detection
- Optimize approaches for surface proteins
- Model Systems:
 - CD4⁺ and CD8⁺ lymphocytes
 - Hepatocyte populations
 - Mitochondria from mouse liver

Reagents & Instruments

- Reagents
 - Anti-CD4-FITC
 - Anti-CD8-RPE
 - Anti-CD45-APC
- Cell Sorting & Analysis
 - BD FACS Vantage[™] SE
 - BD FACS Calibur™
- Mass Spectrometry
 - Surveyor[®] HPLC
 - LCQ[™] Deca Ion Trap Mass Spectrometer
 - TurboSequest[™]

Lymphocyte Sample Preparation

Label blood with CD4-FITC & CD8-RPE

Ficoll gradient to separate lymphocytes

Sort CD4+ & CD8+ cells by FACS

Reduce (TCEP) and trypsinize cells (15-30 min)

Further trypsinize peptides overnight

Collect peptides in peptide trap

Separate on nanoflow column

LCQ Deca ion trap

MS/MS fragmentation

Database search & protein identification

Fluorescence Activated Cell Sorting

Analysis of Sorted Populations

Mass Spectrometry - Peptide Sequence

Results

Spectrum of peptide ADLQDDTFIGNEPLTPEVR

from CD4⁺ cells

Matched to CD11a

Proteins Identified

> 350 proteins matched, including 30 hypothetical protein product sequences

CD4+ Cells

- 9 CD Proteins
 CD3, CD11a, CD16, CD35, CD99, CD117, CD121b, CD128b, CD132
- 28 Other Membrane-Related Proteins
 - Includes cell adhesion molecules, interleukin and other receptors
- Immunoglobulins

CD8+ Cells

• 14 CD Proteins

CD3, CD8, CD16, CD18, CD47, CD49b, CD51, CD71, CD80, CD84, CD98, CD99, CD120b, CDB9

 20 Other Membrane-Related Proteins

Includes cell adhesion molecules, interleukin and other receptors

- Immunoglobulins
- **Challenges:** CD4 not identified in CD4⁺ population; CD45 not detected
 - CD117 (c-kit, early development marker) observed

CD4 Model for "Difficult" Target

Recombinant CD4 (Protein Sciences Corp.) & HPB-ALL cells 🖾 tryptic digest 🖾 mass spectrometry

rCD4 (800 fmole)

CD4	20 scans	11 unique peptides
HSA precursor	2 scans	2 unique peptides

- rCD4 bound to anti-CD4-IMag particles (800 fmole)
 - CD4 4 unique peptides 5 scans 5 unique peptides HSA precursor 10 scans
- CD4 on HPB-ALL cells (80000 copies/cell, 6 x 10⁶ cells, ~ 800 • fmole) CD4
 - not detected

Molecule Copy Numbers

Molecule	Per T-cell	fmoles/10 ⁶ cells	LC-MS
CD3	8.1 x 10 ⁴	130	++
CD4	5.9 x 10 ⁴	98	-
CD8	1.4 x 10 ⁵	230	+
CD11a	2.7 x 10 ⁴	45	+
CD16	7.9 x 10 ⁴	130	+
CD18	3.1×10^4	52	+
CD45	1.9 x 10 ⁵	320	-

Appendix A, Cell Separation Methods and Applications. 1998. Recktenwald D and Radbruch A, eds.

Liver Model

- Collagenase perfusate of human liver (BD Gentest, Woburn, MA)
- Anti-CD45-APC / propidium iodide Sort (viability, CD45 expression, scatter) LC-MS/MS analysis

Preliminary Results - Hepatocyte Fraction

- 35 proteins identified with high confidence from 54 unique peptides
- 8 mitochondrial-specific proteins and precursor proteins
- Hepatic arginase
- Large proportion of cytoplasmic proteins

Mitochondria

Homogenate from mouse liver cells ↓

Antibodies against metaxin or Tim23 (BD Biosciences Pharmingen) ↓ Anti-Kappa-RPE

✓ Analysis & sorting

Summary

- Cell separation focuses LC-MS/MS on a simpler target population
- Can detect large number of lineage-specific proteins
- Peptide digestion off cells is not complete and varies with target
- May be more difficult to digest the antigens used for selection
- Able to detect many proteins in complex mixtures at femtomolar levels (<100,000 copies/cell)
- Powerful tool room for further optimization

Collaborators

Thermo Finnigan

(San Jose, CA)

- Colette Rudd
- Pavel Bondarenko
- Thomas Shaler
- Sally Swedberg
- William Hancock

BD Biosciences Immunocytometry Systems (San Jose, CA)

- Jitakshi De
- Martin Tapia
- Rana Alsharif
- David Houck
- William Godfrey
- Diether Recktenwald

