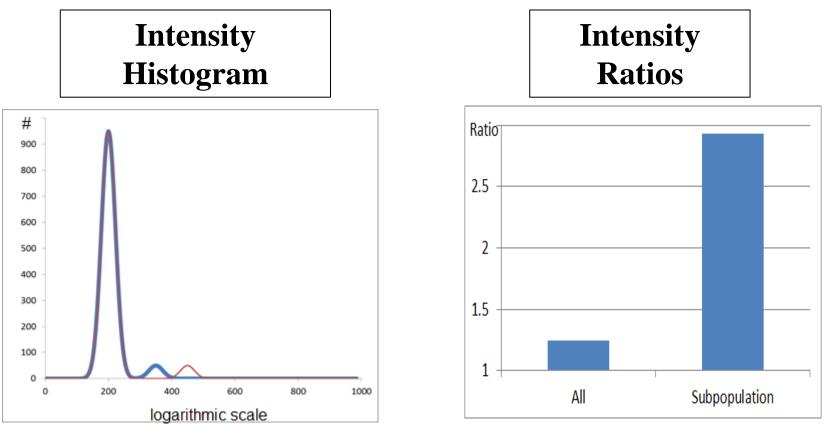
SPRING SCHOOL ON IMMUNOLOGY

Ettal, Bavaria, March 29 - April 3, 2020

Date changed to: October 25 - 30

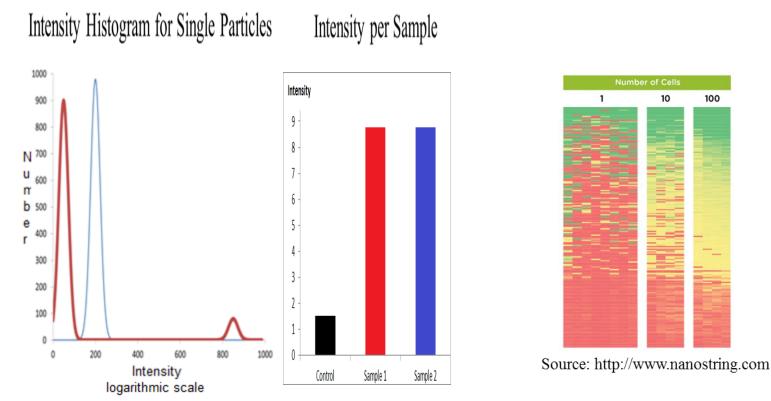
Principles of Flow and Image Cytometry & Recent Innovations for Single Cell Analysis

Diether Recktenwald, BD Biosciences, retired Desatoya LLC, Reno NV, USA Phone:+1-408-658-6074 Email: diether@desatoya.com http://www.desatoya.com

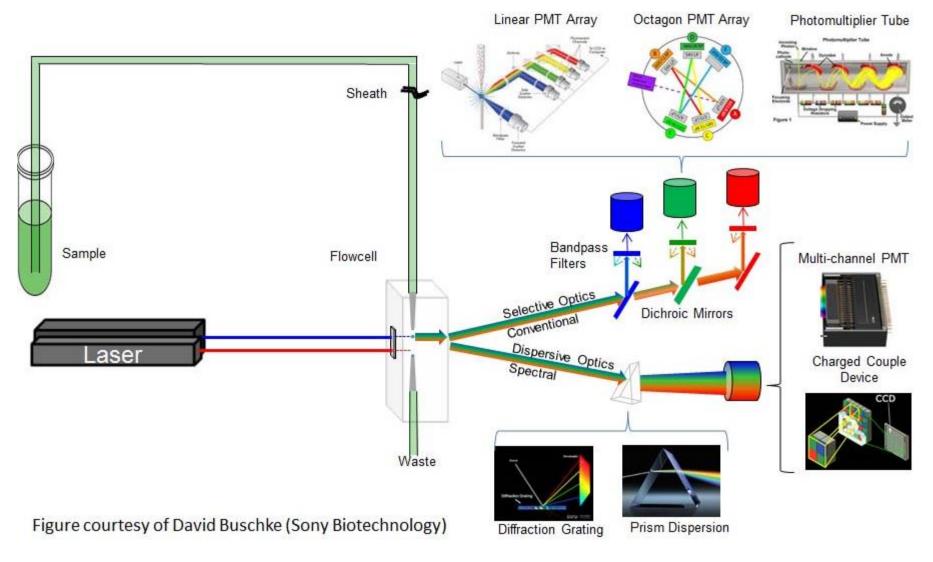

Key Reference Abbreviation

In this document "GUIDELINES" is used for Cossarizza, Andrea, et al. "Guidelines for the use of flow cytometry and cell sorting in immunological studies." European journal of immunology 49.10 (2019): 1457-1973

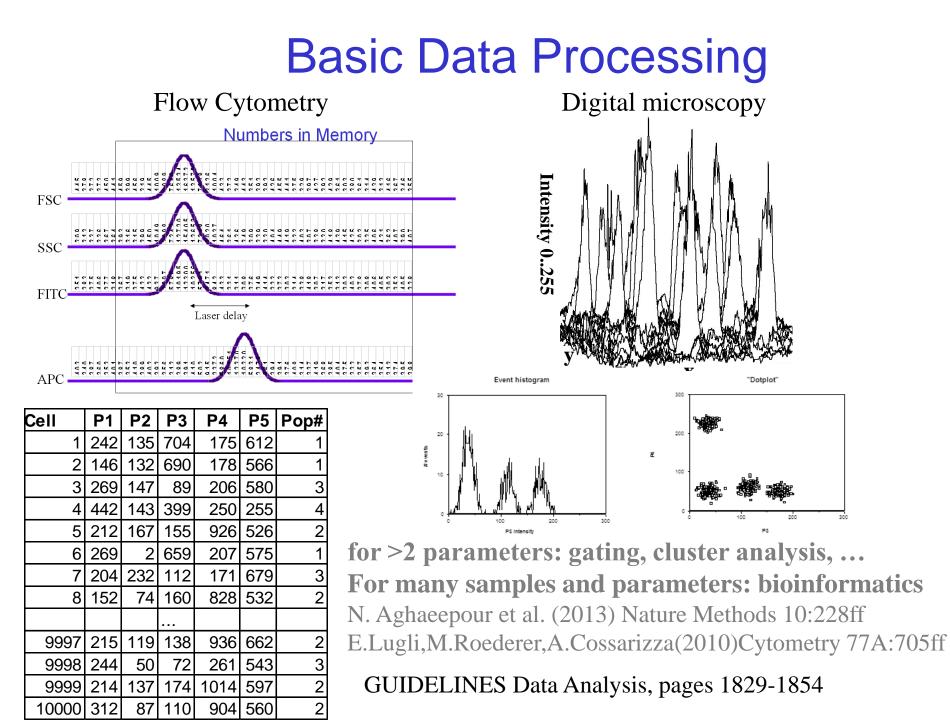
The GUIDELINES contain contributions from 337 experienced scientists from more than a hundred institutes worldwide, describing their recommendations for the optimal use of flow cytometry.


References with a DOI number can be located with an Internet search.

Why Cell Subset Analysis at the Single Cell Level


Subpopulation analysis detects changes better, especially for rare subpopulations.

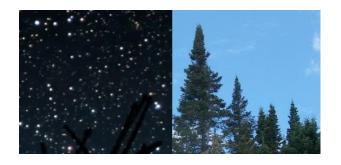
Why Single Cell Analysis


Cell by cell intensity analysis detects population heterogeneity.

Flow Cytometer Components

GUIDELINES Flow cytometers, pages 1478ff

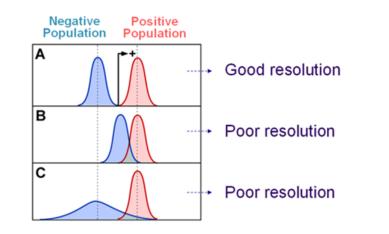
Dichroic filters vs. Multispectral cytometry: Feher K et al.(2016) Cytometry 89A: 681-9

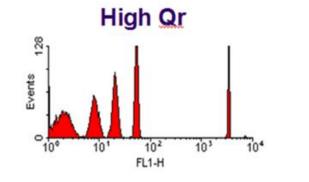


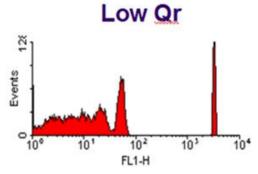
Hi-Parameter Data Processing

TOOL	PURPOSE					
PhenoGraph	Clustering					
X-Shift	Clustering					
ACCENSE	Clustering					
DensVM	Clustering					
FlowSOM	Clustering					
SPADE	Clustering					
Citrus	Clustering, differential abund	ance analysis				
Cydar	Clustering, differential abundance analysis					
ACDC	Cell type assignment					
SCAFFoLD	Cell type assignment, cellular	trajectory mapping				
Statistical SCAFFoLD	Cell type assignment, cellular	trajectory mapping				
	differential abundance anal	ysis				
Wanderlust	Cellular trajectory detection					
DREMI/DREVI	Cellular trajectory detection					
t-SNE	Dimensionality reduction					
	Olsen L R et al. (2019)	DOI: 10.1002/cyto.a.23621				

more at: Palit S et al. (2019) doi:http://dx.doi.org/10.1101/473215 Mair F et al. (2016) doi: 10.1002/eji.201545774 (mini-review)


Instrument Evaluation Br, Qr



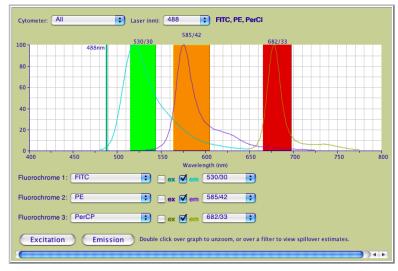

Br, optical background from

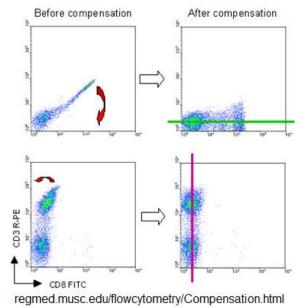
- Cell autofluorescence
- Flow cell reflections
- Ambient light
- Free fluorochrome
- Raman scatter
- Spectral overlap

Qr, photon detection efficiency

Figures: Joe Trotter, BD Biosciences

Signal Overlap and "Compensation"


Calculation of concentrations from optical/mass intensities


 $I_{1} = a_{11} * c_{1} + a_{12} * c_{2} + a_{13} * c_{3}$ $I_{2} = a_{21} * c_{1} + a_{22} * c_{2} + a_{23} * c_{3}$ $I_{3} = a_{31} * c_{1} + a_{32} * c_{2} + a_{33} * c_{3}$

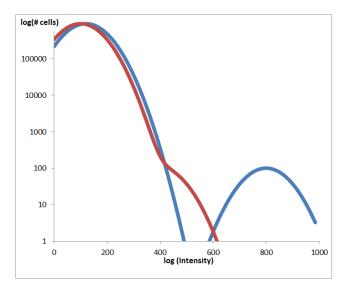
- a_{ik} : "compensation" matrix numbers
- I_i : measured intensities
- c_k : label concentrations

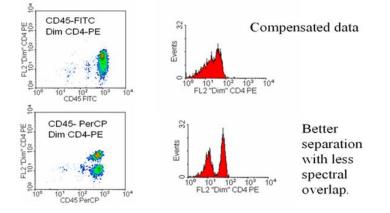
Solve n equations with n unknowns (in spectral cytometry generally many more equations than unknowns)

GUIDELINES Compensation, pages 1484-88

Cytometer Measurements

* Subset fractions

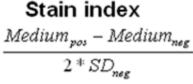

- Single Cell Analysis
- * Cell-concentration
- * Cell size * Cell shape
- * Cell arrangement in clusters
- * Mass of multiple cellular components per cell
- * Distribution of component mass in subsets
- * Temporal change of the above parameters


Non-cell applications

- * Highly multiplexed bead-based immunoassays
- * Single molecule counting

Label Selection

- Detection System
- Brightness
- Spectral Overlap
- Application (surface vs. internal)

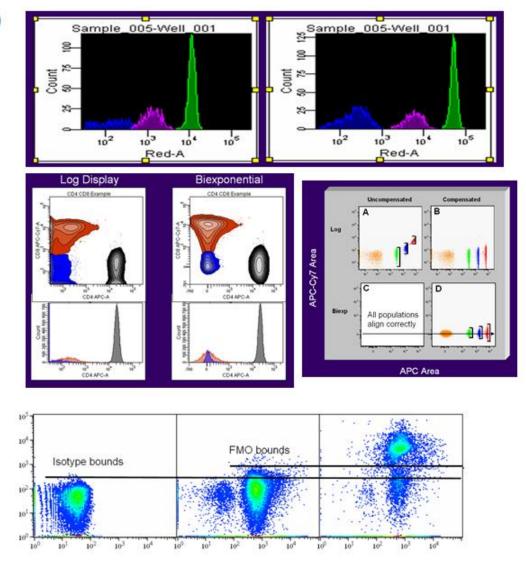


Brightness and Separation

Spectral Overlap and Separation

More info: Maecker HT et al. (2004) Cytometry 62A:169-173

Reagent performance $\frac{Medium_{pe}}{2}$

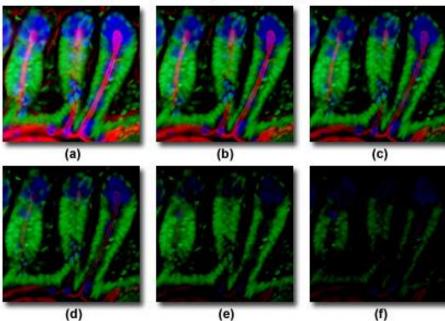


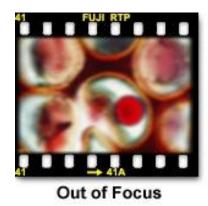
Optimizing cytometry measurements

 Gain (PMT, CMOS, CCD) settings

• Data Display

Controls

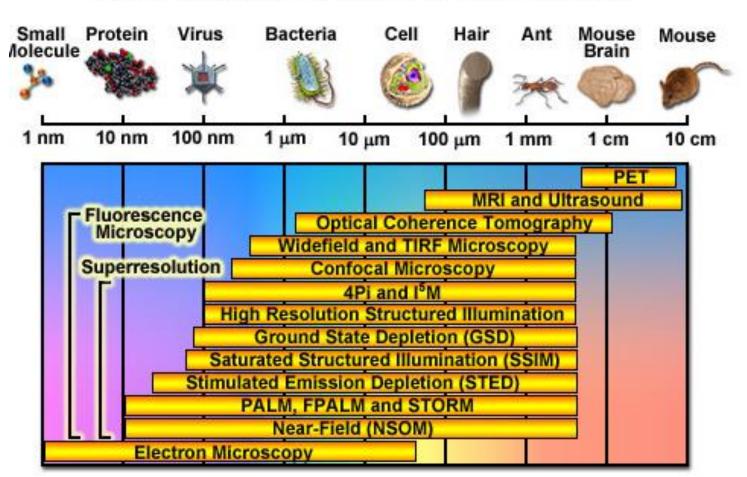

J. Trotter, BD Biosciences


Quantitative Multi-color Microscopy

Additional factors

- Field to field focus
- Photobleaching

Differential Photobleaching in Multiply-Stained Tissues



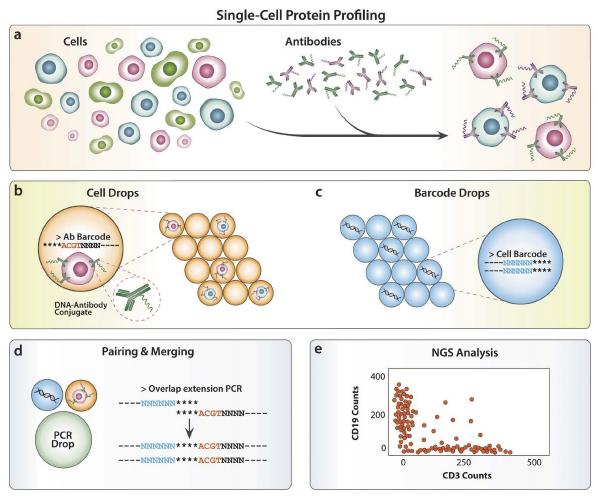
Images from

http://micro.magnet.fsu.edu/ primer/index.html

Super-Resolution Microscopy

Spatial Resolution of Biological Imaging Techniques

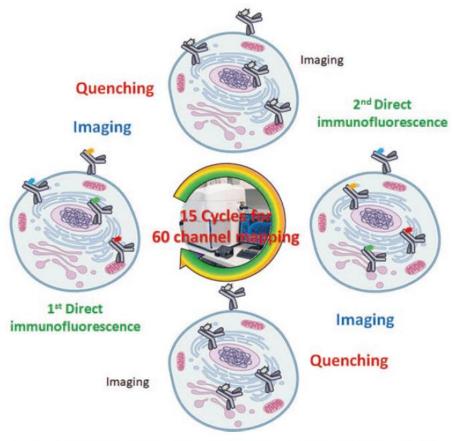
http://zeiss-campus.magnet.fsu.edu/articles/ superresolution/introduction.html


Multiparameter Cell Analysis

- Imaging
 - Immunofluorescence (IF)
 - Sequential Stain-Destain IF
 - •
- Flow Cytometry
 - IF, SERS labels
 - CyTOF
 - Sequence coding
 - Direct Raman
 - Label-free Impedance
 - Imaging e.g. Imagestream
- In-vivo Imaging and Flow Cytometry

More info: Bendall SC et al. (2012) Nature Biotech. 30:639-47
Maecker H, Trotter J (2011) Multicolor Flow Cytometry Application Note
http://www.desatoya.com/ScienceTechnology/CytometryWithSorting.htm

Fluorophore	Laser Line, nm	Max Ex. nm	Max Em, nm	Relative Brightness		
BD Horizon Brilliant Ultraviolet 395	355	348	395	g		
Alexa Fluor 350	355	340	440			
BD Horizon Brilliant Ultraviolet 496	355	348	496			
BD Horizon Brilliant Ultraviolet 563	355	348	563			
BD Horizon Brilliant Ultraviolet 661	355	348	661			
BD Horizon Brilliant Ultraviolet 737	355	348	737			
BD Horizon Brilliant Ultraviolet 805	355	348	805			
DvLight 405	405	400	420			
Alexa Fluor 405	405	400	420			
BD Horizon Brilliant Violet 421	405	407	420			
eFluor 450	405	40/	445			
BD Horizon V450	405	405	445			
Super Bright 436	405	404	448			
	405	414	436			
Pacific Blue	405 405	401	452			
BD Horizon Brilliant Violet 480						
BD Horizon V500	405	415	500			
BD Horizon Brilliant Violet 510	405	405	510			
BD Horizon Brilliant Violet 570	405	407	574			
Super Bright 600	405	414	600			
BD Horizon Brilliant Violet 605	405	407	602			
Super Bright 645	405	414	645			
BD Horizon Brilliant Violet 650	405	407	650			
Super Bright 702	405	414	702			
BD Horizon Brilliant Violet 711	405	407	711			
BD Horizon Brilliant Violet 786	405	407	786			
BD Horizon Brilliant Blue 515	488	490	515			
DyLight 488	488	493	518			
Alexa Fluor 488	488	495	519			
FITC	488	490	525			
PerCP	488	490	675			
BD Horizon Brilliant Blue 700	488	485	693			
PerCP-Cv5.5	488	490	695			
DvLight 550	561	562	576			
PE	488 561	496/546	578			
PE-eFluor 610	488 561	496/546	607			
PE/Dazzle 594	488 561	496/546	610			
PE-Alexa Fluor 647	488 561	496/546	667			
PE-Cy6	488 561	496/546	667			
PE-Cv6.5	488 561	496/546	695			
PE-Alexa Fluor 750	488 561	496/546	779			
PE-Ov7	488 561	496/546	785			
eFluor 660	640	633	660			
APC	640	650	661			
APC Alexa Fluor 647	640	650	665			
Alexa Fluor 64/ Cv5	640	650	670			
DyLight 650	640	654	673			
Alexa Fluor 700	640	702	723			
APC-eFluor 780	640	650	780			
APC-Cy7	640	650	785			
APC/Fire 750	640	650	787			

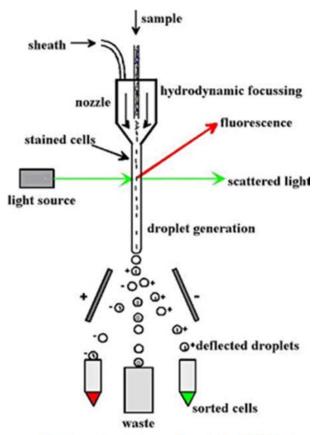

Multiparameter Single Cell Analysis using Sequence Barcodes

Shahi P et al. (2017) Abseq; DOI: 10.1038/srep44447

Conceived to measure unlimited number of markers with single molecule sensitivity (PCR). Analysis of the details reveals important limitations e.g. limited dynamic range, issues combining low and high expression markers in addition to common staining artefacts.

Cyclic Immunofluorescence Microscopy

Capable of measuring a very large number of markers on a stationary cell/tissue sample by sequentially staining, observing, quenching.


Very high sensitivity with fluorescent labels

Eng J (2020) DOI: 10.1007/978-1-4939-9773-2_24

Multi-marker Cytometry Measurements Points To Consider

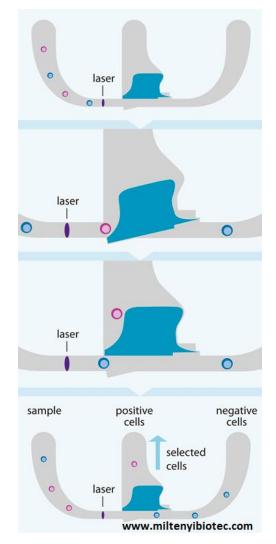
- Know your instrument status e.g. Qr & Br for different channels
- Use optimal detector settings e.g. high gain to maximize sensitivity (check to avoid off-scale events)
- An antibody/dye combination with poor separation for a single marker assay will not work for a multi-marker measurement
- Use high sensitivity labels for low expression markers and vice versa
- For energy transfer fluorophors beware of spectral drifts by photo-degradation
- Internal controls are essential

Cell Sorting (FACS droplet sorter)

www.lifesciencesfoundation.org/events-The_FACS.html

Application Examples

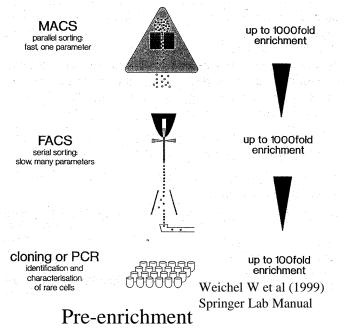
- Chromosomes
- Cloning, Strain Improvement
- Genomics, Proteomics
- Comprehensive single cell analyses (heterogeneity)


GUIDELINES Cell sorting, pages 1513 - 1523

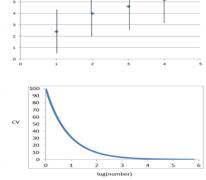
Other Cell Sorting Technologies

- Single Cell dispensers
- Tyto/OWL
- DEP sorter
- BulkSorting (Magnetic, Gravity, Acoustic, ...)

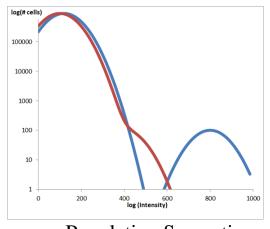
DEPArrayTM System



 $MACSQuant {\bf \ensuremath{\mathbb R}} Tyto^{TM}$

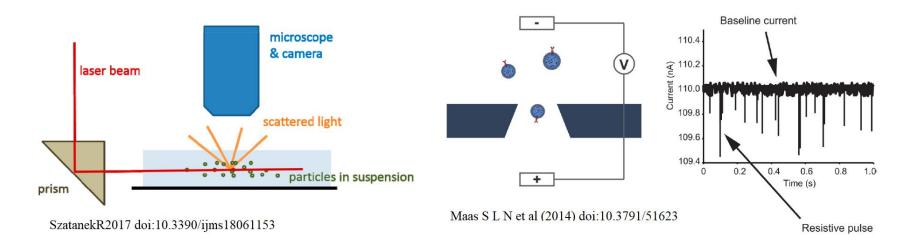

Rare Cell Analysis and Sorting

Examples CD34, AC133, antigen specific cells, CTCs


- Poisson count statistics
- Population Separation
- Bulk pre-enrichment or enrichment sorts

	Sample 1	Sample 2	Sample 3	Sample 4	5
					4
	6	2	6	8	2
	3	7	1	6	1
	1	3	5	3	0
	1	4	5	6	0
	1	4	6	3	100
					90
Mean	2.4	4	4.6	5.2	80
St.Dev	2.2	1.9	2.1	2.2	CV 50
					40
		Overall	Mean	4.1	20
			St.Dev	2.2	0

Ignoring Counting Statistics Can Lead to Erroneous Conclusions



Population Separation

GUIDELINES Rare Cells: General Rules, pages 1523 – 26, 1846-7

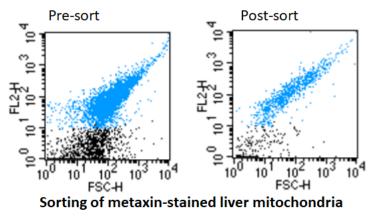
Small Particle Analysis Microorganisms, Organelles, Exosomes

Flow Cytometry Light microscopy Electron microscopy Atomic force microscopy Nanoparticle tracking analysis Tunable resistive pulse sensing Dynamic light scattering

GUIDELINES Mitochondria, Exosomes 1527-35; microbes 1883-7

Organelles

Observation


Fluorescence microscopy Superresolution microscopy Electron microscopy Atomic force microscopy Flow Cytometry

Purification

Centrifugation Optical trapping Field flow fractionation Inertial flow microfluidics Affinity binding to beads FAOS (fluorescence assisted organelle sorting)

Parado a participado de la competitiva de la com

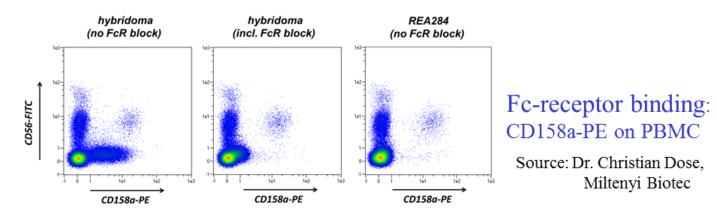
www.biochem.mpg.de/en/20171219-schueder-jungmann

Data from BD Biosciences

Conclusions / Caveats

• For optimal results use an adequate technology

(flow cytometry has enormous capabilities, but is not always the adequate technology to use e.g. single cell kinetics)


Understand the limitations of the system

(complexity, limits of detection, non-specific binding of reagents, \dots)

- Use appropriate statistical methods (understand variance of very low counts during rare cell analysis)
- Validate results with appropriate controls

Reagents

- Nucleic acid Probes
- Antibodies (Human, Mouse, Rabbit; Camel, Llama, Shark)
- Recombinant Antibodies
- Aptamers
- Molecular Imprinted Polymers
- Environment sensitive dyes (DNA dyes, pH probes)
- Enzyme reaction probes (fluorogenic substrates)
- Labels (fluorescent, Raman, mass, sequence "barcodes", microlasers) Fodey T et al; Trends in Anal.Chem. 30(2011) 254ff

Llama: 15 kDalton antibodies 10⁻⁹M Kd, high stability

New Bright Dyes

BV711

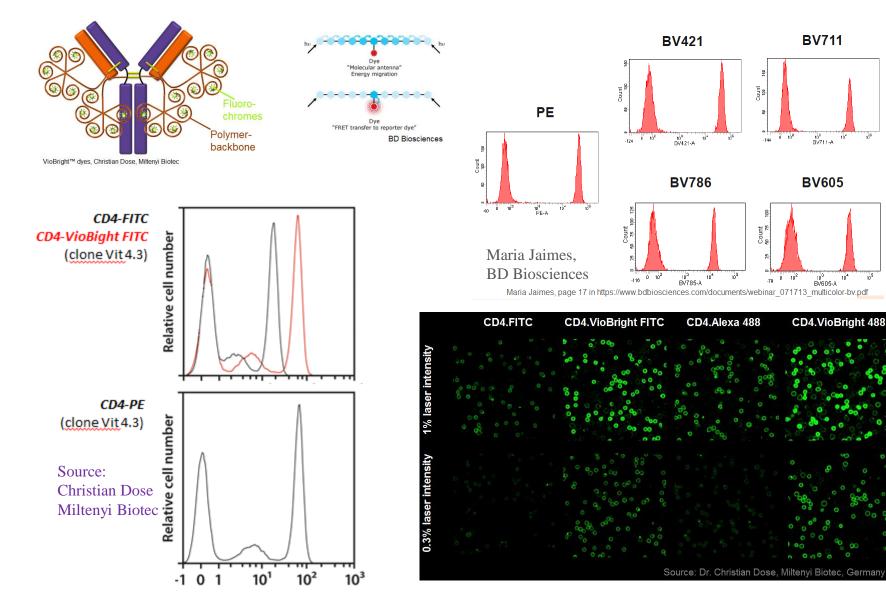
10⁴ BV711-A

BV605

10⁰ BV605-A

CD4.VioBright 488

10 10


Count

-144

õg

.79 0 102

0 102

Conclusions

Multi-parameter cytometry

Optimized flow and imaging single cell cytometry with well controlled sample collection and preparation, well characterized reagents and appropriate bio-informatics tools provide quantitative molecular insights into biological processes at cellular and sub-cellular levels.

Many systems isolate selected single cells.

New developments in many areas provide more tools for cytometry.

More info: Bendall SC et al. (2012) Nature Biotech. 30:639-47 Maecker H, Trotter J (2011) Multicolor Flow Cytometry Application Note

Key Applications

- Multi-parameter immunofluorescence (antibodies)
- Multi-parameter gene expression analysis (NA probes)
- Exosome analysis and sorting
- Single cell sorting for analysis with other technologies
- Cell cycle analysis (high resolution FCM, imaging, BrDU)
- Molecular clustering (fluorescence energy transfer FRET)
- Kinetics (population-based flow cytometry, single cell by imaging; Ca++ flux, enzyme activity, cell proliferation)
- Receptor ligand binding (by quantitative fluorescence)
- Single Cell Sequencing (single cell sorting, PCR amplif.)
- Particle-based assays (Luminex-type multiplexed assays)

Technologies for Cell Analysis

	LOD	Mult	Envi	Id	Morph	Res	vivo	lbl-free
Flow cytometry	+++	÷	÷	+	_	-	÷	+
Digital microscopy	+++	++	++	+	+++	++	_	++
2-photon imaging	+++	+	+	+	++	++	+	_
Electron microscopy	+	-	_	+	+++	+++		-
NGS	++	+++		+++				+++
ELISA	++	÷		+++				
Electrophoresis	++	++	+	+				+++
Mass spectrometry	+	+++		+++	+	-		+++
NMR MRI MRM		++	++++	++	++		+++	+++
Acoustic imaging					++	-	+++	+++
X-ray imaging		-	-	_	+++	++	+++	+++
•••	na	na	na	na	na	na	na	na

Details at: http://www.desatoya.com/ScienceAndTechnology.htm

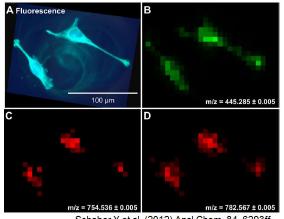
Microfluidics for WBC Isolation From Blood

Method			WBC Separation efficiency		Purity			
				RBC depletion	WBC	MNC	WBC Enrichment	Sample throughput**
Cross-Flow filter	8	Undiluted	~98%	~99.975%	~70.5%	~28%*	~2000	0.06 µl/min
Cross-Flow liner	12	Undiluted	~97.2%	NA	~96.9%	~39%*	NA	0.33 µl/min
Hydrodynamic filtration	13	10x	NA	NA	~3.6%	~1.4%*	~29	2 µl/min
Hydrophoretic filtration	15	20x (rat blood)	NA	NA	~58%	~23.2%*	~210	0.05 µl/min
Deterministic lateral displacement	9	Undiluted	~96% (WBC) ~95% (MNC)	~99.1%	~9%	~5.5%	~110	0.018 µl/min
Microfiltration using rarchets	26	Undiluted	~98% (WBC)	~100%	~100%	~40%*	NA	0.083 µl/min
	16	500x	~95%	~94%	NA	NA	NA	3.6 μl/min
Inertial focusing	18	400x	~89.7%	~99.8%	~91%	~36.4%*	NA	0.375 µl/min
meriariocasing	19	20x	NA	NA	~48%	~19.2%*	NA	240 μl/min (30 μl/min per channel)
Dielectrophoresis	21	5x	~92.1%	~87%	NA	NA	NA	0.16 µl/min
Leukocyte margination	22	Undiluted	NA	NA	NA	NA	~34	NA
Continuous erythrocyte lysis	23	Undiluted	~100%	>99.5%	NA	NA	NA	0.5 μl/min
	24	10x	~99%	NA	NA	NA	NA	100 µl/min
Slanted hydrodynamic filtration	27	20x	~85%	NA	~80%	~32%*	NA	2 μl/min
Acoustophoresis	This work	20x	>43% (WBC) >87% (MNC)	>99.95%	~54%	~53%	~1000 (WBC) ~2800 (MNC)	5 μl/min

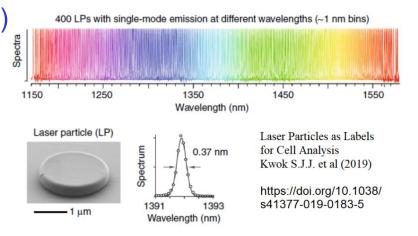
Label-free, continuous separation of WBC from blood using microfluidics. Urbansky A et al (2017) DOI:10.1038/s41598-017-17200-9

Examples of New Detection **Technologies**

MALDI imaging


(high parameter in-vitro imaging using mass spectrometry)

Label-free imaging with Raman П (measuring cellular components by their Raman spectra)


Microlasers for high parameter cytometry

(ultra-narrow bands of light emission)

Label-free medium resolution П NMR imaging (chemical environment sensing)

Schober Y et al. (2012) Anal.Chem. 84, 6293ff

New Detector-Label Combinations

300

400

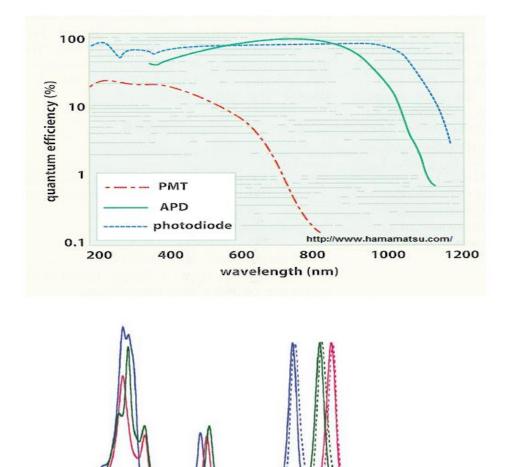
500

600

Wavelength [nm]

700

800


nirvanasciences.com/

900

 New photodetectors extend the available spectrum

> (Si avalanche photodiodes extend detection into the far infrared)

 New dyes add excitation in the UV, some detection in the IR (Fluorescent polymers, bacteriochlorins, ...)

Conclusions Evolving Technologies

Technology developments in algorithms, computing, detectors, electronics, nanotechnology, microfluidics, organic chemistry, and recombinant protein technology create the basis for new reliable analytical approaches for a deeper molecular understanding of living systems.

There is substantial value in working with other scientific disciplines.

Acknowledgements

- Joe Trotter
- Ed Goldberg
- Brent Gaylord
- Mike Brasch
- Ben Verwer
- Eric Diebold
- above all BD
- BD Biosciences
- Miltenyi Biotec
- CYTEK Biosciences
- D ...

- Holden Maecker, Stanford
- Bob Hoffman, consultant
- Martin Büscher, Miltenyi
- Christian Dose, Miltenyi
- Ming Yan, CYTEK
- □ Eric Chase, CYTEK
- Hrair Kirakossian, consultant
- Maria Jaimes, CYTEK
- Liping Yu
- Brian Warner
- David Basiji, BioCare Medical

D ...

Contact: Email: diether@desatoya.com Phone: USA-408-658-6074 More science detail and references: http://www.desatoya.com