AKADEMIE FÜR IMMUNOLOGIE

SPRING SCHOOL ON IMMUNOLOGY

Ettal, Bavaria, March 10-15, 2019

Principles of Flow and Image Cytometry & New Technologies for Single Cell Analysis

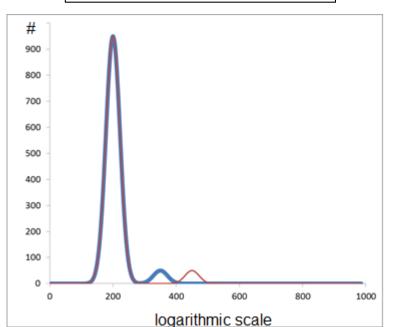
Diether Recktenwald, BD Biosciences, retired Desatoya LLC, Reno NV, USA Phone:+1-408-658-6074

Email: diether@desatoya.com

http://www.desatoya.com

Key Reference Abbreviation

In this document "GUIDELINES" is used for

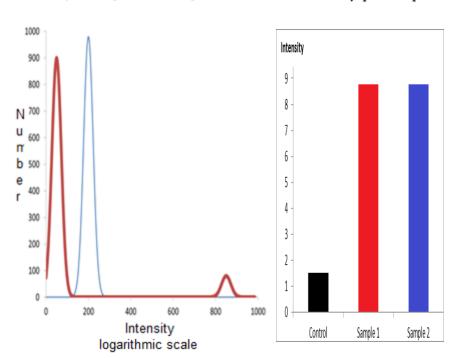

Cossarizza, Andrea, et al. (2017) "Guidelines for the use of flow cytometry and cell sorting in immunological studies." European journal of immunology 47 (10) 1584 - 1797

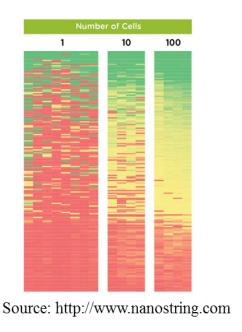
The GUIDELINES contain contributions from 231 experienced scientists from 192 institutes worldwide, describing their recommendations for the optimal use of flow cytometry.

References with a DOI number can be located with an Internet search.

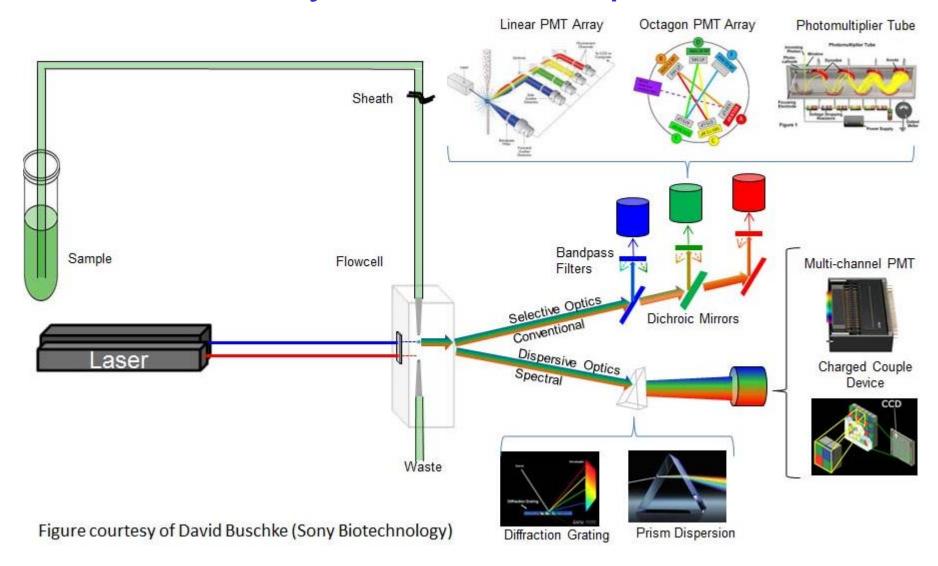
Why Cell Subset Analysis at the Single Cell Level

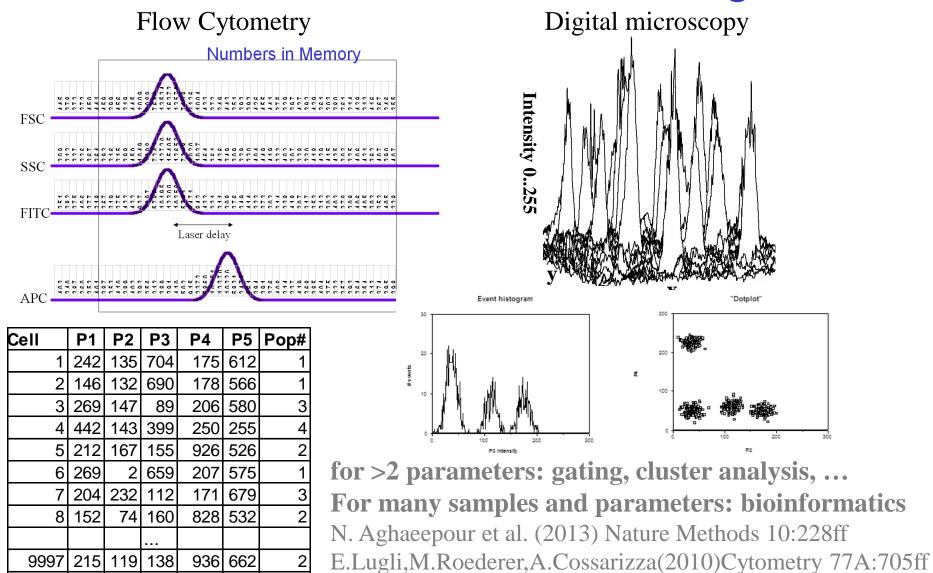
Intensity Histogram




Intensity Ratios

Subpopulation analysis detects changes better, especially for rare subpopulations.


Why Single Cell Analysis


Cell by cell intensity analysis detects population heterogeneity.

Flow Cytometer Components

GUIDELINES Flow cytometers, pages 1596- 1608 Dichroic filters vs. Multispectral cytometry: Feher K et al.(2016) Cytometry 89A: 681-9

Basic Data Processing

244

9999 214 137

9998

10000 312

50

87

72

174

110

261 543

904 560

1014 597

GUIDELINES Data Analysis, pages 1651-65

Hi-Parameter Data Processing

TOOL	PURPOS	E
TOOL	PURPOS	I

PhenoGraph Clustering

X-Shift Clustering

ACCENSE Clustering

DensVM Clustering

FlowSOM Clustering

SPADE Clustering

Citrus Clustering, differential abundance analysis

Cydar Clustering, differential abundance analysis

ACDC Cell type assignment

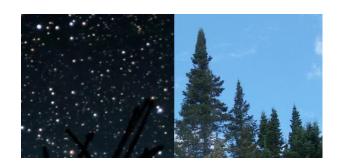
SCAFFoLD Cell type assignment, cellular trajectory mapping

Statistical SCAFFoLD Cell type assignment, cellular trajectory mapping

differential abundance analysis

Wanderlust Cellular trajectory detection

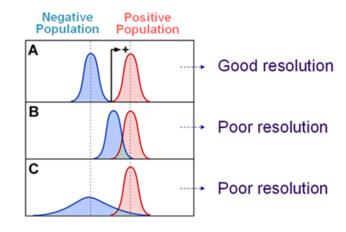
DREMI/DREVI Cellular trajectory detection

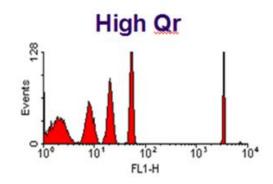

t-SNE Dimensionality reduction

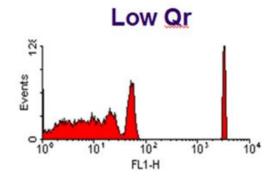
Olsen L R et al. (2019) DOI: 10.1002/cyto.a.23621

more at: Palit S et al. (2019) doi:http://dx.doi.org/10.1101/473215

Mair F et al. (2016) doi: 10.1002/eji.201545774 (mini-review by Monday speaker)


Instrument Evaluation Br, Qr




Br, optical background from

- Cell autofluorescence
- Flow cell reflections
- Ambient light
- Free fluorochrome
- Raman scatter
- Spectral overlap

Qr, photon detection efficiency

Figures: Joe Trotter, BD Biosciences

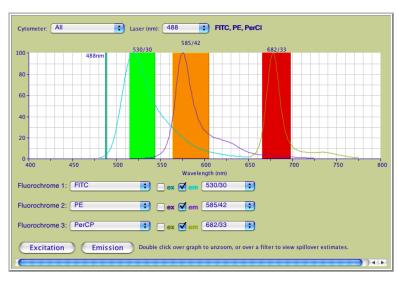
Signal Overlap and "Compensation"

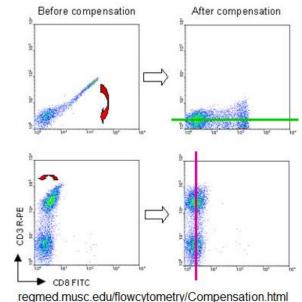
Calculation of concentrations from optical/mass intensities

$$I_{1} = a_{11} * c_{1} + a_{12} * c_{2} + a_{13} * c_{3}$$

$$I_{2} = a_{21} * c_{1} + a_{22} * c_{2} + a_{23} * c_{3}$$

$$I_{3} = a_{31} * c_{1} + a_{32} * c_{2} + a_{33} * c_{3}$$


a_{ik} : "compensation" matrix numbers


I_i: measured intensities

 c_k : label concentrations

Solve n equations with n unknowns (in spectral cytometry generally many more equations than unknowns)

GUIDELINES Compensation, pages 1618-20

Cytometer Measurements

Single Cell Analysis

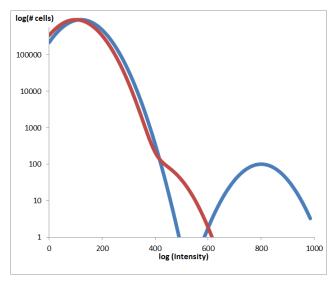
* Cell-concentration

* Subset fractions

* Cell size

- * Cell shape
- * Cell arrangement in clusters
- * Mass of multiple cellular components per cell
- * Distribution of component mass in subsets
- * Temporal change of the above parameters

Non-cell applications


- * Highly multiplexed bead-based immunoassays
- * Single molecule counting

Label Selection

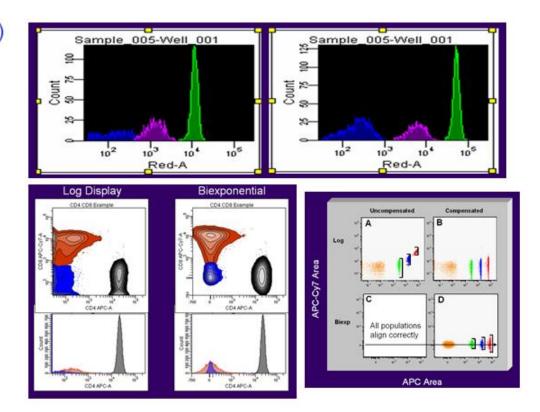
- Detection System
- Brightness
- Spectral Overlap
- Application (surface vs. internal)

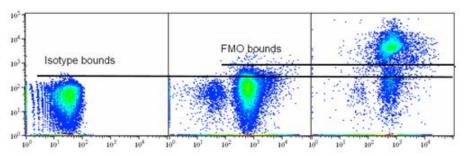
Reagent performance

Stain index $\underline{Medium_{pos} - Medium_{neg}}$ $2 * SD_{neg}$

Brightness and Separation

Spectral Overlap and Separation

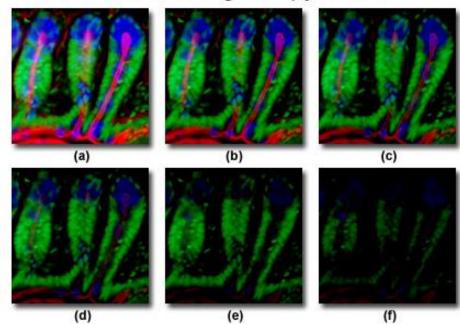

More info: Maecker HT et al. (2004) Cytometry 62A:169-173

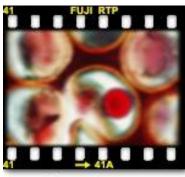

Optimizing cytometry measurements

 Gain (PMT, CMOS, CCD) settings

Data Display

Controls


J. Trotter, BD Biosciences


Quantitative Multi-color Microscopy

Additional factors

- Field to field focus
- Photobleaching

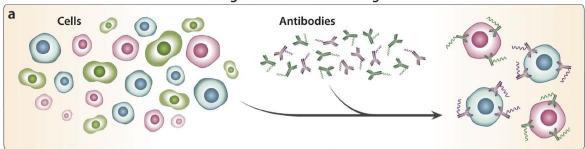
Differential Photobleaching in Multiply-Stained Tissues

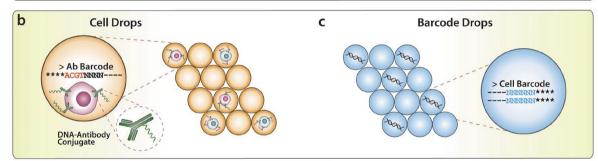
Out of Focus

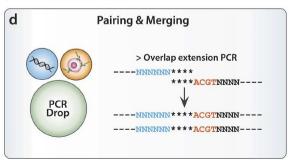
Images from

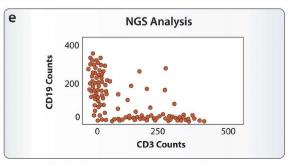
http://micro.magnet.fsu.edu/ primer/index.html

Multiparameter Cell Analysis


- Imaging
 - Immunofluorescence (IF)
 - Sequential Stain-Destain IF
 - •
- Flow Cytometry
 - IF, SERS labels
 - CyTOF
 - Sequence coding
 - Direct Raman
 - Label-free Impedance
 - Imaging e.g. Imagestream
- In-vivo Imaging and Flow Cytometry

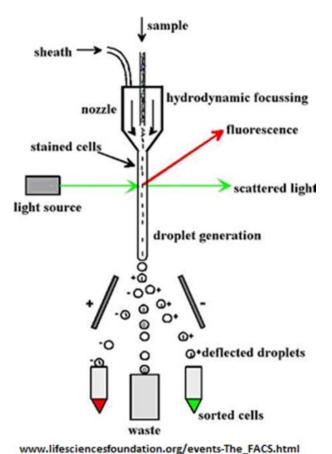

Fluorophore	Laser Line, nm	Max Ex, nm	Max Em, nm	Relative Brightness
BD Horizon Brilliant Ultraviolet 395	355	348	395	
Alexa Fluor 350	355	340	440	
BD Horizon Brilliant Ultraviolet 496	355	348	496	
BD Horizon Brilliant Ultraviolet 563	355	348	563	
BD Horizon Brilliant Ultraviolet 661	355	348	661	
BD Horizon Brilliant Ultraviolet 737	355	348	737	
BD Horizon Brilliant Ultraviolet 805	355	348	805	
DyLight 405	405	400	420	
Alexa Fluor 405	405	401	420	
BD Horizon Brilliant Violet 421	405	407	421	
eFluor 450	405	405	445	
BD Horizon V450	405	404	448	
Super Bright 436	405	414	436	
Pacific Blue	405	401	452	
BD Horizon Brilliant Violet 480	405	436	478	
BD Horizon V500	405	415	500	
BD Horizon Brilliant Violet 510	405	405	510	
BD Horizon Brilliant Violet 570	405	407	574	
Super Bright 600	405	414	600	
BD Horizon Brilliant Violet 605	405	407	602	
Super Bright 645	405	414	645	
BD Horizon Brilliant Violet 650	405	407	650	
Super Bright 702	405	414	702	
BD Horizon Brilliant Violet 711	405	407	711	
BD Horizon Brilliant Violet 786	405	407	786	
BD Horizon Brilliant Blue 515	488	490	515	
DvLight 488	488	493	518	
Alexa Fluor 488	488	495	519	
FITC	488	490	525	
PerCP	488	490	675	
BD Horizon Brilliant Blue 700	488	485	693	
PerCP-Cy5,5	488	490	695	
DyLight 550	561	562	576	
PE	488 561	496/546	578	
PE-eFluor 610	488 561	496/546	607	
PE/Dazzle 594	488 561	496/546	610	
PE-Alexa Fluor 647	488 561	496/546	667	
PE-Cy6	488 561	496/546	667	
PE-Cy6.5	488 561	496/546	695	
PE-Alexa Fluor 750	488 561	496/546	779	
PE-Cv7	488 561	496/546	785	
eFluor 660	640	633	660	
APC	640	650	661	
Alexa Fluor 647	640	650	665	
Cv6	640	649	670	
DyLight 650	640	654	673	
Alexa Fluor 700	640	702	723	
APC-eFluor 780	640	650	780	
APC-Cv7	640	650	785	
APC/Fire 750	640	650	787	
	0.10		101	


More info: Bendall SC et al. (2012) Nature Biotech. 30:639-47 Maecker H, Trotter J (2011) Multicolor Flow Cytometry Application Note http://www.desatoya.com/ScienceTechnology/CytometryWithSorting.htm


Multiparameter Single Cell Analysis using Sequence Barcodes

Single-Cell Protein Profiling

Shahi P et al. (2017) Abseq; DOI: 10.1038/srep44447


Conceived to measure unlimited number of markers with single molecule sensitivity (PCR).

Analysis of the details reveals important limitations e.g. limited dynamic range, issues combining low and high expression markers in addition to common staining artefacts.

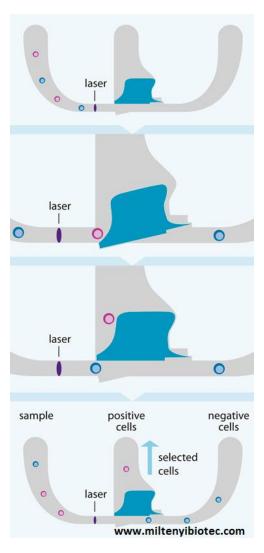
Multi-marker Cytometry Measurements Points To Consider

- Know your instrument status e.g. Qr & Br for different channels
- Use optimal detector settings e.g. high gain to maximize sensitivity (check to avoid off-scale events)
- An antibody/dye combination with poor separation for a single marker assay will not work for a multi-marker measurement
- Use high sensitivity labels for low expression markers and vice versa
- For energy transfer fluorophors beware of spectral drifts by photo-degradation
- Internal controls are essential

Cell Sorting (FACS droplet sorter)

Application Examples

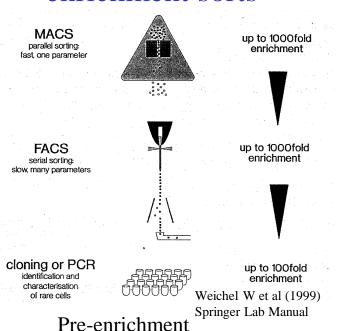
- Chromosomes
- Cloning, Strain Improvement
- Genomics, Proteomics
- Comprehensive single cell analyses (heterogeneity)

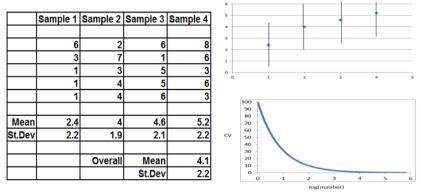

GUIDELINES Cell sorting, pages 1608 - 1617

Other Cell Sorting Technologies

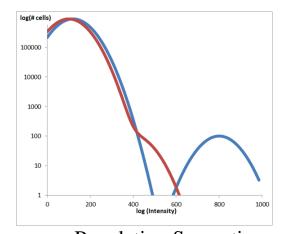
- Single Cell dispensers
- Tyto/OWL
- DEP sorter
- NanoCellect
- BulkSorting (Magnetic, Gravity, Acoustic, ...)

DEPArrayTM System





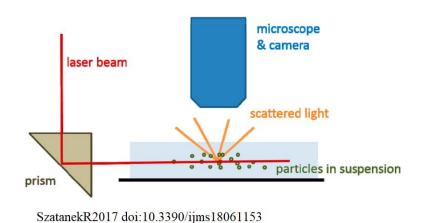
Rare Cell Analysis and Sorting

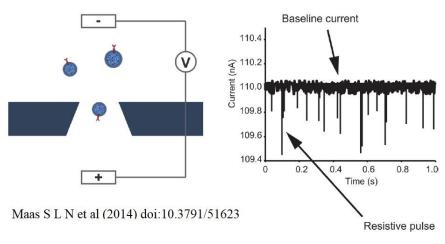

Examples CD34, AC133, antigen specific cells, CTCs

- Poisson count statistics
- Population Separation
- Bulk pre-enrichment or enrichment sorts

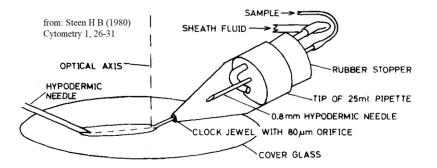
Ignoring Counting Statistics Can Lead to Erroneous Conclusions

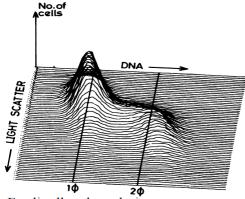
Population Separation

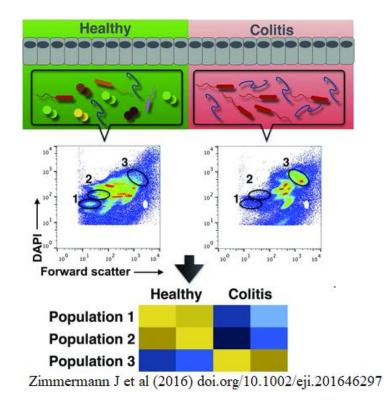

GUIDELINES Rare Cells: General Rules, pages 1647 - 50

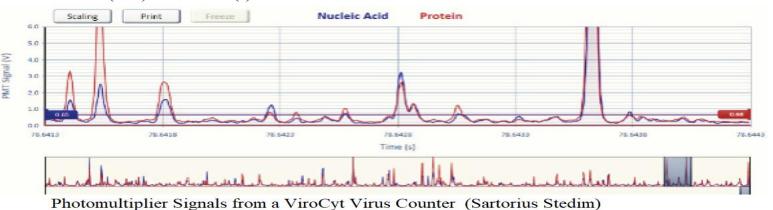

Small Particle Analysis

Microorganisms, Organelles, Exosomes

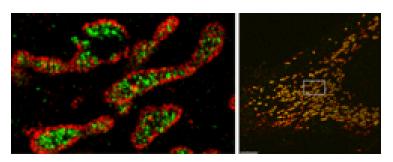

Flow Cytometry
Light microscopy
Electron microscopy
Atomic force microscopy


Nanoparticle tracking analysis
Tunable resistive pulse sensing
Dynamic light scattering



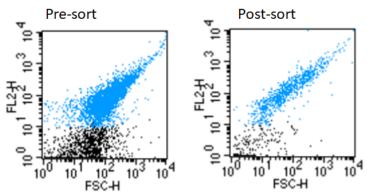

Bacteria & Virus Flow Cytometry

E.coli cell cycle analysis Skarstad K (1083) J Bacteriol 154(2) 656-662



Organelles

Observation


Fluorescence microscopy
Superresolution microscopy
Electron microscopy
Atomic force microscopy
Flow Cytometry

www.biochem.mpg.de/en/20171219-schueder-jungmann

Purification

Centrifugation
Optical trapping
Field flow fractionation
Inertial flow microfluidics
Affinity binding to beads
FAOS (fluorescence assisted organelle sorting)

Sorting of metaxin-stained liver mitochondria

Data from BD Biosciences

Conclusions / Caveats

For optimal results use an adequate technology

(flow cytometry has enormous capabilities, but is not always the adequate technology to use e.g. single cell kinetics)

- Understand the limitations of the system (complexity, limits of detection, non-specific binding of reagents, ...)
- Use appropriate statistical methods (understand variance of very low counts during rare cell analysis)
- Validate results with appropriate controls

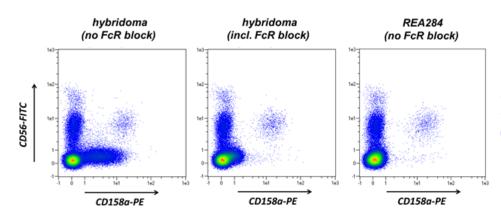
Conclusions Multi-parameter cytometry

Optimized flow and imaging single cell cytometry with adequate bio-informatics tools provide quantitative molecular measurements into biological processes at organism, cellular and sub-cellular levels. Many systems isolate selected single cells. New developments in many areas provide more tools for cytometry.

More info: Bendall SC et al. (2012) Nature Biotech. 30:639-47 Maecker H, Trotter J (2011) Multicolor Flow Cytometry Application Note

Key Applications

- Multi-parameter immunofluorescence (antibodies)
- Multi-parameter gene expression analysis (NA probes)
- Exosome analysis and sorting
- Single cell sorting for analysis with other technologies
- Cell cycle analysis (high resolution FCM, imaging, BrDU)
- Molecular clustering (fluorescence energy transfer FRET)
- Kinetics (population-based flow cytometry, single cell by imaging; Ca++ flux, enzyme activity, cell proliferation)
- Receptor ligand binding (by quantitative fluorescence)
- Single Cell Sequencing (single cell sorting, PCR amplif.)
- Particle-based assays (Luminex-type multiplexed assays)

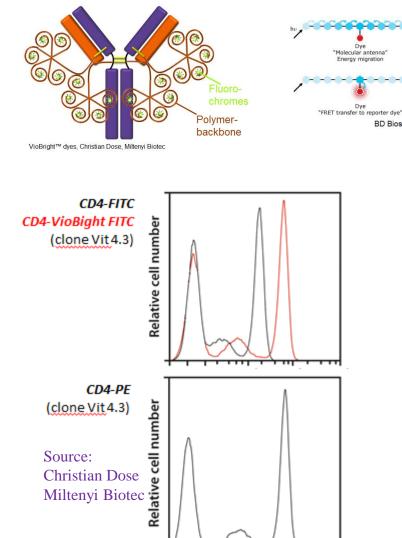

Reagents

- Nucleic acid Probes
- Antibodies (Human, Mouse, Rabbit; Camel, Llama, Shark)
- Recombinant Antibodies

Llama: 15 kDalton antibodies 10-9M Kd, high stability

- Aptamers
- Molecular Imprinted Polymers
- Environment sensitive dyes (DNA dyes, pH probes)
- Enzyme reaction probes (fluorogenic substrates)
- Labels (fluorescent, Raman, mass, sequence "barcodes")

Fodey T et al; Trends in Anal.Chem. 30(2011) 254ff

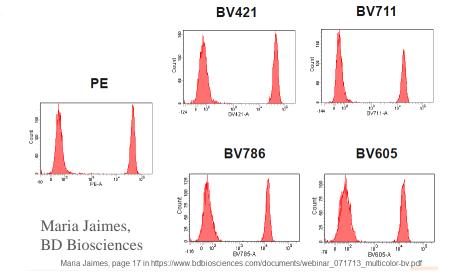


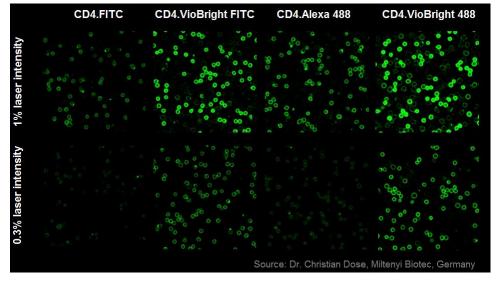
Fc-receptor binding: CD158a-PE on PBMC

Source: Dr. Christian Dose, Miltenyi Biotec

New Bright Dyes

BD Biosciences




10²

 10^{3}

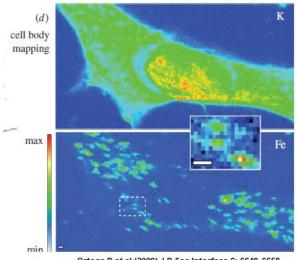
10¹

-1 0 1

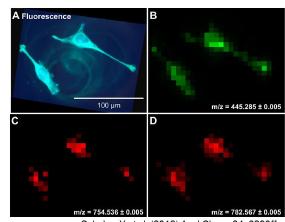
Technologies for Cell Analysis

	LOD	Mult	Envi	Id	Morph	Res	vivo	lbl-free
Flow cytometry	+++	+	+	+	_	_	+	+
Digital microscopy	+++	++	++	+	+++	++	_	++
2-photon imaging	+++	+	+	+	++	++	+	-
Electron microscopy	+	_	_	+	+++	+++		_
NGS	++	+++		+++				+++
ELISA	++	+		+++				
Electrophoresis	++	++	+	+				+++
Mass spectrometry	+	+++		+++	+	_		+++
NMR MRI MRM		++	++++	++	++		+++	+++
Acoustic imaging					++	_	+++	+++
X-ray imaging			_	-	+++	++	+++	+++
	na	na	na	na	na	na	na	na

Details at: http://www.desatoya.com/ScienceAndTechnology.htm


Microfluidics for WBC Isolation From Blood

Method		Dilution factor	WBC Separation efficiency	RBC depletion	Purity			
					WBC	MNC	WBC Enrichment	Sample throughput**
Cross-Flow filter	8	Undiluted	~98%	~99.975%	~70.5%	~28%*	~2000	0.06 μl/min
	12	Undiluted	~97.2%	NA	~96.9%	~39%*	NA	0.33 μl/min
Hydrodynamic filtration	13	10x	NA	NA	~3.6%	~1.4%*	~29	2 μl/min
Hydrophoretic filtration	15	20x (rat blood)	NA	NA	~58%	~23.2%*	~210	0.05 μl/min
Deterministic lateral displacement	9	Undiluted	~96% (WBC) ~95% (MNC)	~99.1%	~9%	~5.5%	~110	0.018 μl/min
Microfiltration using rarchets	26	Undiluted	~98% (WBC)	~100%	~100%	~40%*	NA	0.083 μl/min
Inertial focusing	16	500x	~95%	~94%	NA	NA	NA	3.6 µl/min
	18	400x	~89.7%	~99.8%	~91%	~36.4%*	NA	0.375 μl/min
	19	20x	NA	NA	~48%	~19.2%*	NA	240 µl/min (30 µl/min per channel)
Dielectrophoresis	21	5x	~92.1%	~87%	NA	NA	NA	0.16 μl/min
Leukocyte margination	22	Undiluted	NA	NA	NA	NA	~34	NA
Continuous erythrocyte lysis	23	Undiluted	~100%	>99.5%	NA	NA	NA	0.5 μl/min
	24	10x	~99%	NA	NA	NA	NA	100 μl/min
Slanted hydrodynamic filtration	27	20x	~85%	NA	~80%	~32%*	NA	2 μl/min
Acoustophoresis	This work	20x	>43% (WBC) >87% (MNC)	>99.95%	~54%	~53%	~1000 (WBC) ~2800 (MNC)	5 μl/min

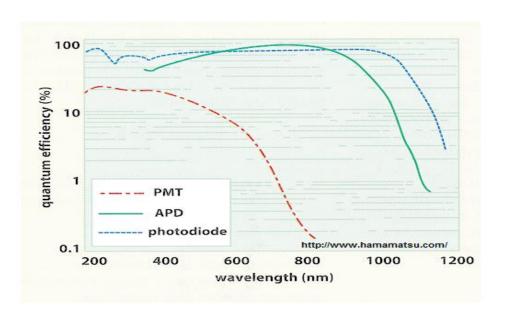

Label-free, continuous separation of WBC from blood using microfluidics. Urbansky A et al (2017) DOI:10.1038/s41598-017-17200-9

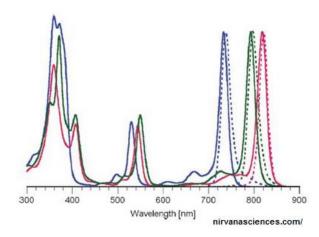
Examples of New Detection Technologies

- High spatial resolution and multi-parameter capability with X-ray / synchrotron radiation fluorescence
 - (super-high resolution with element labels or direct element imaging)
- Medium resolution, multiparameter mass spectrometric imaging
 - (CyTOF like element labels, direct metabolite or structural component detection)
- Label-free imaging with Raman (measuring cellular components by their Raman spectra)
- Label-free medium resolution NMR imaging (chemical environment sensing)

Ortega R et al (2009) J.R.Soc Interface 6: \$649-\$658

Schober Y et al. (2012) Anal. Chem. 84, 6293ff


New Detector-Label Combinations


New photodetectors extend the available spectrum

(Si avalanche photodiodes extend detection into the far infrared)

 New dyes add excitation in the UV, some detection in the IR

(Fluorescent polymers, bacteriochlorins, ...)

ConclusionsEvolving Technologies

Technology developments in algorithms, computing, detectors, electronics, nanotechnology, microfluidics, organic chemistry, and recombinant protein technology create the basis for new reliable analytical approaches for a deeper molecular understanding of living systems.

There is substantial value in working with other scientific disciplines.

Acknowledgements

- Joe Trotter
- Ed Goldberg
- Liping Yu
- Brent Gaylord
- Mike Brasch
- Ben Verwer
- Eric Diebold
- above all BD
- BD Biosciences
- Miltenyi Biotec
- CYTEK Biosciences
- 0 ...

- Holden Maecker, Stanford
- □ Bob Hoffman, consultant
- Martin Büscher, Miltenyi
- Christian Dose, Miltenyi
- Ming Yan, CYTEK
- □ Eric Chase, CYTEK
- Hrair Kirakossian, consultant
- Maria Jaimes, CYTEK
- Brian Warner
- David Basiji, BioCare Medical
- o ...

Contact: Email: diether@desatoya.com Phone: USA-408-658-6074

More science detail and references: http://www.desatoya.com