

State of the Art Cytometry & Emerging Technologies for Single Cell Analysis

Diether Recktenwald, BD Biosciences, retired Desatoya LLC, Reno NV, USA Email: diether@desatoya.com http://www.desatoya.com

Biology Research Targets and Tools

Organism

Organ

Tissue

Single Cell

Organelle

Macromolecule

Small molecules Electrophoresis

NMR X-ray imaging Ultrasound 2-photon imaging In-vivo cytometry Light microscopy **Electron microscopy** Flow cytometry Cell imaging NA sequencing Mass spectrometry **TIRF** microscopy

Contrast agents Affinity reagents - antibodies - probes

Enzyme substrates Labels

- absorbance
- fluorescence
- element tags

Sample prep

Early & Modern Flow Cytometry and Imaging Microscopy

Flow and Imaging Cytometry Features

I,F

F, I

F

F

F,(**I**)

F,(**I**)

Single particle (cell) analysis with

- High sensitivity (single molecule sensitivity by fluorescence)
- Wide dynamic count range (10³ to 10⁷ cells mL⁻¹)
- Particle sizes from 0.2 to 20 um
- High analysis rates to ~10⁵ particles sec⁻¹
- Direct size and 3D spatial information
- Multi-color fluorescence, multi-parameter analysis F,I
- Wide dynamic range for fluorescence (10⁵)
- Direct kinetic measurements
- Viable cells can be re-covered
- Measurement of adherent cells
- Good ease-of-use

Physical parameters

- Light scatter
- Fluorescence
- Phosphorescence
- Raman
- Element mass
- Electrical properties e.g. impedance

Why Single Cell/Particle Analysis

Intensity Histogram for Single Particles

Intensity per Sample

Cell by cell intensity analysis detects population heterogeneity.

Benefits of Subset Specific Analysis

Subpopulation analysis detects changes better, especially for rare subpopulations.

Cell Counting (abs. counts or percentages) Counting Statistics

Ignoring Counting Statistics Can Lead to Erroneous Conclusions

Flow Cytometer Components

Cell Sorting

Applications Examples

- Chromosomes
- Strain Improvement
- Genomics
- Proteomics

Cell sorting review: Derek Davies http://www.facs.ethz.ch/docs/lit see also:

http://www.desatoya.com/ScienceTech nology/CytometryWithSorting.htm

Instrument Evaluation Br

Relative B (Br) is a measure of true optical background in the fluorescence detector.

Filter Arrangement and Spectral Overlap

(not relevant for element mass cytometry)

Perfetto SP et al (2004) Nature Reviews Immunology 4, 648ff

Instrument Evaluation Qr

J. Trotter, BD Biosciences

Optimizing cytometry measurements (I)

Background light

 Dye properties (brightness and spectral overlap)

CD45-FITC 32 FL2 "Dim" CD4 PE 101 102 103 Compensated data Dim CD4-PE Events 10¹ 10² 10³ 10⁴ å 10° FL2 "Dim" CD4 PE 100 102 CD45 FITC 101 103 104 104 CD45- PerCP 32 FL2 "Dim" CD4 PE 101 102 103 Better Dim CD4-PE Events separation with less spectral 0 10^{0} 10^{1} 10^{2} 10^{3} 104 0 overlap. FL2 "Dim" CD4 PE 104 101 01 102 CD45 PerCP 10³

J. Trotter, BD Biosciences

Optimizing cytometry measurements (II)

 Gain (PMT, CMOS, CCD) settings

• Data Display

Controls

J. Trotter, BD Biosciences

Multi-parameter Fluorescence Cytometry Points To Consider

- Know your instrument status e.g. Qr & Br for different channels
- Use high enough gain settings to maximize sensitivity
- An antibody/dye combination that marginally allows discrimination of positives/negatives in a single color assay is unlikely to contribute anything helpful in a multicolor experiment.
- Avoid spillover from bright cell populations into channels requiring high sensitivity
- Beware of tandem dye degradation
- Internal controls are essential

Quantitative Multi-color Microscopy

Additional factors

- Field to field focus
- Photobleaching

Differential Photobleaching in Multiply-Stained Tissues

Images from

http://micro.magnet.fsu.edu/ primer/index.html

In-vivo Multi-parameter Cytometry

Single cell analysis in living animals

Tuchin VV et al: Cytometry 79A (2011) 737ff

New Developments for in-vitro Multi-parameter Cytometry

- Element-Label Flow Cytometry (CyTOF, addresses fluorescence spectral overlap issue by using elements as labels, Anal. Chem., 2009, 81 (16), pp 6813–6822)
- SERS-Label and Spectral Flow Cytometry (uses spectral (fine)-structure to distinguish labels, Cytometry, 2008, 73A(2), pp 119-128, SONY cytometer)
- Sequential Stain Destain Cytometry (Cytometry, 2009, 75A(4), pp 362-370)

CR3- CCR5- CCR7-

Conclusions Multi-parameter cytometry

Optimized flow and imaging single cell cytometry with adequate bio-informatics tools provide quantitative molecular measurements into biological processes at organism, cellular and sub-cellular levels. New developments in many areas have simplified the tools for the biologist. Evolving Technologies for Cytometry

- More low complexity cytometers for cell (subset) counting
- Novel cell sorters
- Integrated Cell Analysis System
- Intra-vital imaging
- Innovative sample preparation
- Fluorescent polymers for high sensitivity
- Novel affinity reagents (antibodies)

Low-complexity Cytometers for Cell Counting

Counting Nucleated Cells Propidium Iodide (impermeant) + SYTO-17 (permeant)

Novel Cell Sorters

Integrated Bio-Assay System

Intra-vital Imaging

- Two-photon laser scanning microscopy
- Raman (SERS and CARS microscopy)
- Positron emission tomography
- Ultrasound, x-Rays

Issues:

- tissue optics
- object motion
- flow rate
- labeling

• • •

Recent review of in-vivo microscopy: Andresen V, et al. (2012) High-Resolution Intravital Microscopy. PLoS ONE 7(12): e50915

Innovative Sample Preparation

Microfluidic system for leukocyte isolation and cell washing (deterministic lateral displacement)

also:

- acoustic focusing
- microfluidic filters
- inertial flow
- magnetic nanoparticles
- high density particles
- dielectropheresis
- optical traps

• • • •

Cyto 2012 poster, Liping Yu et al, GPB and BD Biosciences

Deterministic Lateral Displacement

Separating particles by size, adding reagent, mixing, and washing From: Morton K J et al. Lab on a Chip 2008

Bright Fluorescent Polymer Dyes (BD Sirigen)

Polymer Based Fluorochromes

- Well defined synthetic organic polymer structures
 - Single conjugation site, defined size, etc.
- Backbone comprised of π-conjugated repeat units
 - Affords massive light harvesting (ε > 10⁶) materials with high quantum yields
- Tunable architecture adapted for low NSB, high aqueous solubility and spectral performance

Brilliant Violet Tandems

- Provides a wider range of colors spanning the visible spectrum
 - >6 unique colors validated
- Chemically controlled ratio of donor/acceptor provides:
 - Reproducible performance
 - Low (<5%) compensation at 450nm

Brilliant Violet 421™

- PE level performance w/ 405nm Laser
- >10x the Stain Index of Pacific Blue
- Enables detection of low abundance targets in multicolor assay panels (e.g. CD56, CD127, etc.)
- Wide range of Ab clones validated

see also: Cytometry A. 81: 45ff

http://sirigen.com/flow_cytometry.html

Novel Affinity Reagents

- Antibodies
 - Antibodies from different species (e.g. Llama 15 kDalton fragments with 10⁻⁹M Kd and high stability, potential for intracellular use)
 - Recombinant antibody fragments
 - •
- Synthetic affinity reagents
 - Aptamers
 - Protein scaffolds
 - Molecular Imprinted Polymers

Fodey T et al; Trends in Anal. Chem. 30(2011) 254ff

Conclusions Evolving Technologies

Technology developments in algorithms, computing, detectors, electronics, nanotechnology, microfluidics, organic chemistry, and recombinant protein technology create the basis for new reliable analytical approaches for a deeper molecular understanding of living systems.

There is value in working with other scientific disciplines.

Acknowledgements

- Joe Trotter
- Ming Yan
- Maria Jaimes
- Brian Warner
- Ed Goldberg
- Hrair Kirakossian
- Liping Yu
- Brent Gaylord
- Mike Brasch
- Ben Verwer
 - ... above all BD

- Holden Maecker, Stanford
- Bob Hoffman, consultant
- Martin Buescher, Miltenyi
- • •
- BD Biosciences
- AmCell Corp/ Miltenyi Biotec
- ...

Contact

Email: diether@desatoya.com Phone: USA-408-658-6074 URL: http://www.desatoya.com