

# Intravital Microscopy, Flow Cytometry and Cell Sorting

7-13 July 2013 | Berlin, Germany

# Cytometry Basics and New Developments

**Diether Recktenwald** 

Desatoya LLC, Reno NV, USA

http://www.desatoya.com

### Why Single Cell Analysis

Intensity Histogram for Single Particles

Intensity per Sample



Cell by cell intensity analysis detects population heterogeneity.

### Single Cell Cytometry vs. Bulk Analysis

Coutesy Dr. Ji

### **Benefits of Subset Analysis**



Subpopulation analysis detects changes better, especially for rare subpopulations.

### From Early to Present Microscopy and Flow Cytometry









Source: BD Biosciences

### Flow and Imaging Cytometry Features

I.F

F

F

F

I.F

I,F

#### Single cell analysis with

- High sensitivity (single molecule sensitivity)
- Wide dynamic range (10<sup>0 to 7</sup> mL<sup>-1</sup>)
- High analysis rates to  $\sim 10^5$  sec<sup>-1</sup>
- Light scatter
- Direct size and 3D information
- Multi-parameter analysis
- Direct kinetic measurements
- Live/dead discrimination
- Viable cells can be re-covered
- Measurement of adherent cells
- Good ease-of-use



### **Physical parameters**

- Light scatter
- Fluorescence
- Phosphorescence
- Raman
- Element mass
- Electrical properties e.g. impedance



# **Flow Cytometer Fluidics**



CD-ROM Vol 3 Purdue University Cytometry Laboratories

### **Flow Cytometer Optical Systems**



### **Filter Arrangement and Spectral Overlap**



**BD** Biosciences





Perfetto SP et al (2004) Nature Reviews Immunology 4, 648ff

### **Basic Data Processing**



2

3

2

2

3

2

2











Source: BD Biosciences

# Sorting for gene expression analysis in single cells



Figure 9:  $C_t$  heat map from 96 PCR assays, are shown on a 96.96 chip. Each point represents gene expression within a single cell. Some genes are more highly expressed in SP High than SP Low cell population.

Isolation of Mouse Hematopoietic Stem Cell Side Populations Using SP<sup>KLS</sup> and Post-Sort Confirmation Using Single-Cell Gene Expression

Susan Reynolds,<sup>1</sup> Gil Reinin,<sup>1</sup> J. Clark Mason,<sup>1</sup> Lisa Isailovic,<sup>2</sup> Krishna Datta,<sup>2</sup> Ken Livak,<sup>2</sup> Chandana Batchu,<sup>2</sup> and Alain Mir<sup>2</sup> <sup>1</sup>BD Biosciences, 2350 Qume Dr, San Jose, CA, 95131 and <sup>2</sup>Fluidigm Corp, 7000 Shoreline Court, Suite 100, South San Francisco, CA, 94080

### **Sorting for Cell Surface Proteomics**

8

#### Cell surface proteome by FACS sorting, followed by LC MS

(in collaboration with Thermo Finnigan, San Jose, CA)





The dot plots show the sorting strategy used for stained peripheral blood cells and population purity after sorting for CD4- and CD8-positive cells. CD4 cells were gated on scatter and FITC fluorescence: CD8 bright cells were gated on scatter and RPE fluorescence. Sorted populations showed >95% purity.

Peptide mixtures were separated by reverse phase HPLC (A) as described in Methods. Eluted peptides were subjected to electrospray injection into the mass spectrometer and analyzed for their mass/charge ratio (m/z value) (B). Selected ions were collected in the ion trap. These parent ions were cracked by collision ion dissociation to produce a range of fragment sizes (C) that were compared to predicted peptide sequences in the human database using TurboSequest (D).

#### Subset Analysis Example



J. Irish, Stanford

### **BeadArray Assays**



## **Instrument Evaluation Br**

Relative B (Br) is a measure of true optical background in the fluorescence detector.



## **Instrument Evaluation Qr**







### **Optimizing cytometry measurements (I)**

#### Background light





 Dye properties (brightness and spectral overlap)

#### next slides:

- Multi-color dye overlap
- Gain (PMT, CMOS, CCD) settings
- Data Display
- Controls



#### Source: Joe Trotter, BD Biosciences

### **Optimizing cytometry measurements (II)**

 Gain (PMT, CMOS, CCD) settings

• Data Display

Sample\_005-Well\_001 Sample\_005-Well\_001 8 8 Count 50 75 Count 50 75 10<sup>5</sup> 104 10<sup>5</sup> 103 102 104 103 102 Red-A Red-A Log Display Biexponential CD4 CD8 Example CD4 CD8 Exampl Uncompensated Compensated Log APC-Cy7 D CD4 APC-A CD4 APC-A Biexp All populations align correctly APC Area CD4 APC-A CD4 APC-A 10 104 FMO bounds Isotype bounds 103  $10^{2}$ 10<sup>1</sup>

103

 $10^{2}$ 

104

100

100

101

103

102

104

Controls

Source: Joe Trotter, BD Biosciences and others

10<sup>1</sup>

102

103

104

### **Marker Brightness**

Brighter markers resolve rare populations better



### **Rare Subpopulation Analysis**

#### **Counting Statistics**



Ignoring Counting Statistics Can Lead to Erroneous Conclusions

### **System Noise**



Gross HJ et al, Cytometry 1993

Eliminating system noise from fluidics perturbations and other sources improves the limit of detection for rare cell analysis.

### **Particle Carry-Over**

#### **Carry-over specification examples**

| (from manufacturer's info) | _      |              |
|----------------------------|--------|--------------|
| Beckman Coulter FC500      | <1%    |              |
| Beckman Coulter            | <0.1%  |              |
| <b>BD FACSCanto II</b>     | < 0.1% | loader <1%   |
| BD FACSVerse               | <0.5%  |              |
| Guava EasyCyte             | <0.2%  |              |
| Life Technologies Attune   |        | loader <0.5% |
| Miltenyi MACSQuant         | <0.01% |              |

Eliminating fluidic system particle carry-over is vital for reliable rare cell analysis.

### Multi-parameter Fluorescence Cytometry Points To Consider Summary

- Know your instrument e.g. Qr & Br for different channels, carrover, ...
- Use high enough gain settings to maximize sensitivity
- An antibody/dye combination that marginally allows discrimination of positives/negatives in a single color assay is unlikely to contribute anything helpful in a multicolor experiment.
- Avoid spillover from bright cell populations into channels requiring high sensitivity
- Beware of tandem dye degradation
- Internal controls are essential
- Take advantage of bright markers for "dim markers"

### New Developments for Multi-parameter Cytometry

 Element-Label Flow Cytometry (CyTOF, addresses fluorescence spectral overlap issue by using elements as labels, Anal. Chem., 2009, 81 (16), pp 6813–6822)



activated Th-memory-cells (4%)

CD3+,CD4+,GITR+FaxP3-CD44high,CD62L-,CTLA-,IL4-IL10-,IFNy-TCRab+CD11o-OCR3-CCR5-CCR7-



- SERS-Label Flow Cytometry (uses spectral fine-structure to distinguish labels, Cytometry, 2008, 73A(2), pp 119-128)
- Sequential Stain Destain Cytometry (Cytometry, 2009, 75A(4), pp 362-370)
- SONY spectral analysis



Christian Hennig, ChipCytometry Hannover Medical School

### **New Developments for Sample Preparation**

Removing erythrocytes and/or free reagent without centrifugation

Silicon filter for leukocyte/ erythrocyte separation



2011 Liping Yu et al, BD Biosciences and Aviva Inc.



#### Acoustic particle focusing

### **Intra-vital Cytometry**

#### Single cell analysis in living animals

#### Flow cytometry in blood vessels



2010, Zharov VP and coworkers

#### Microscopy



2011, Runnels JM et al; homing of multiple myeloma cells in bone marrow



Signals from

- 2-photon fluorescence
- bioluminescence
- photo-acoustic effect
- . . .

Review paper: Niesner RA, Cytometry 79A (2011)

### Conclusions

New technologies from many fields are rapidly generating new opportunities for cytometry.

### **Acknowledgements**

- Joe Trotter
- Ming Yan
- Ben Verwer
- Maria Jaimes
- Brian Warner
- Ed Goldberg
- Hrair Kirakossian
- Liping Yu (all BD)

• BD

- Holden Maecker, Stanford
- Bob Hoffman, independent
- Ken Davis, retired
- Bill Godfrey, Danaher
- Brent Gaylord, Sirigen
- Collette Rudd, Thermo

### Contact

Diether.Recktenwald@cytometrygroup.org, Phone: +1-408-658-6074 Diether@desatoya.com http://www.desatoya.com