Advanced Cytometry Course

A Satellite Symposium of the 4th European Congress of Immunology ECI, Vienna, Austria

> September 6, 2015 9:00 - 16:00 h

Single Cell Analysis Matching Technology with Application Needs

Diether Recktenwald, BD Biosciences, retired Desatoya LLC, Reno NV, USA Email: diether@desatoya.com http://www.desatoya.com

Flow Cytometry in the Context of Biological Systems and Other Technologies

Organism

Organ

Tissue

Single Cell

Organelle

Macromolecule

Small molecules

NMR
X-ray imaging
Ultrasound
2-photon imaging
In-vivo cytometry
Light microscopy
Electron microscopy
Flow cytometry
Cell imaging

NA sequencing Mass spectrometry TIRF microscopy Electrophoresis Contrast agents Affinity reagents

- antibodies
- probes
- Enzyme substrates Labels
 - absorbance
 - fluorescence
 - element tags

Sample prep

Why Single Cell/Particle Analysis

Intensity Histogram for Single Particles

Intensity per Sample

Cell by cell intensity analysis detects population heterogeneity.

Benefits of Subset Specific Analysis

Subpopulation analysis detects changes better, especially for rare subpopulations.

Single Cell Genomics

Single cell analysis reveals heterogeneity, which is masked by averaging, when analyzing groups of cells.

Source: http://www.nanostring.com

Single Cell and Subpopulation Cytometry

Points To Consider

- Understand the capabilities of your system
- Evaluate effects of specimen collection and sample preparation
- Know the quality of your reagents
- Controls are essential
- Validate data analysis

Particle Counting (abs. counts or percentages) Counting Statistics

	Sample 1	Sample 2	Sample 3	Sample 4
	6	2	6	8
	3	7	1	6
	1	3	5	3
	1	4	5	6
	1	4	6	3
Mean	2.4	4	4.6	5.2
St.Dev	2.2	1.9	2.1	2.2
		Overall	Mean	4.1
			St.Dev	2.2

Applications:

- Cell Counting
- Molecule Counting
 - o Digital PCR
 - o Immunoassays

Ignoring Counting Statistics Can Lead to Erroneous Conclusions

Cytometry Worksteps

- Cell observations (photography including video)
- Cell culture monitoring
- Total Cell Counting
- Cell subset counting
- Multi-parameter Cell Analysis
 - Flow Cytometry
 - Imaging
- In-vivo single cell analysis
- Cell Sorting
- Single Cell Sequencing
- Data Analysis
- Sample Preparation
- Workflow Automation

Low Magnification Video and Photography

- Documentation of changes in cell/tissue culture by digital photography or video recording.
- RGB jpeg data have limited quantitative information
- For subsequent quantitative analysis uncompressed data formats like tiff provide good data
- Intensity depth is generally 8 bits/color, some consumer cameras provide 12 bits/color, scientific cameras 16 bits/color
 - Link to an image analysis introduction

9

http://nanolive.ch/3d-cell-explorer/

Microscopy

- Brightfield
- Darkfield
- Fluorescence
- Phosphorescence
- Phase contrast
- Interference contrast
- Polarization

Quantitative measurements

see_link_ImageJ for microscopy
(select cancel, when prompted for password)

http://micro.magnet.fsu.edu/publications/pages/i ntrophoto.html

Cell Growth Monitors/ Tissue Culture

- Low Magnification Microscopy/Imaging
- Impedance

http://www.aceabio.com/case.aspx

Low-cost Cell Counters

(many include viability and single color subset analysis)

- Imaging
- Flow
- Impedance

Scepter™ 2.0 Cell Counter

The Worlds First "Smart Flow Cytometers"

Simple Cell-Subset Counters

- Fluorescence Detection by Imaging (left below)
- Fluorescence Detection by Flow (right on bottom)
- Multi-Frequency Impedance (on right)

Figure 4: Brightfield image of a well on a 96-well microplate showing counted adherent cells.

Accurately Measure Adherent Cells without Trypsinization

Analyze your cell sample without trypsinization to avoid losing cells and look at cells right where they grow over multiple scan times.

Nexcelom Celigo Brightfield and 3-colors of fluorescence

Dead

Viable

Cell Cycle Analysis

- High-resolution Flow Cytometry
- Imaging
- BrDU

From: http://www.vet.cornell.edu/labs/cytometry/cellcycleprotocols.cfm

More info: Nunez R. (2001) Curr. Issues Mol. Biol. 3:67-70

Kinetic Cell Measurements

- Imaging (single cell kinetics)
- Flow Cytometry (population kinetics)

Examples: Ca⁺⁺ flux Enzyme kinetics Cell proliferation

Legend. The Indo-1 ratio was calculated from the violet (440 nm) and green (530 nm) emissions and plotted against the Time parameter. Jurkat T-cells were loaded with 1 μ M Indo-1 for 45 min at 37°. Ionomycin (10 μ g/ml) was added after 30 seconds resulting in a rapid rise in Indo-1 Ratio against Time.

http://www.icms.qmul.ac.uk/flowcytometry/uses/functionalanalysis/calciumflux/ratiometric/index.html

Multiparameter Cell Analysis

- Imaging
 - Immunocytochemistry
 - Multi-color Immunofluorescence
 - Sequential Stain-Destain Immunofluorescence
 - Raman including SERS
- Flow Cytometry
 - Multi-color Immunofluorescence
 - Filter-based
 - Spectral Analysis
 - Raman including SERS
 - CyTOF
- Imaging Flow Cytometry (ImageStream)

More info: Bendall SC et al. (2012) Nature Biotech. 30:639-47 Maecker H, Trotter J (2011) Multicolor Flow Cytometry Application Note

Recent Systems for Multi-parameter Cytometry

• Element-Label Flow Cytometry

(CyTOF, addresses fluorescence spectral overlap issue by using elements as labels, Anal. Chem., 2009, 81 (16), pp 6813–6822)

- SERS-Label and Spectral Flow Cytometry (uses spectral (fine)-structure to distinguish labels, Cytometry, 2008, 73A(2), pp 119-128, SONY cytometer)
- Sequential Stain De-stain Cytometry (Cytometry, 2009, 75A(4), pp 362-370)

 Highly fluorescent polymer dyes (Brilliant violet, ...) (Cytometry, 2012, 81A(6), pp 456-466, http://www.sirigen.com/sirigen_technology.html
 http://www.bdbiosciences.com/documents/multicolor_fluorochrome_laser_ chart.pdf)
 17

Imaging Flow Cytometer

Images of Cells/Particles are captured in a fluid stream and stored individually.

http://www.fluidimaging.com/products/how-dynamic-imaging-particle-analysis-works

https://www.amnis.com/images/ApoptoticIndex.png

More info: Barteneva N.S. et al. (2012) Journal of Histochemistry & Cytochemistry 60: 723ff 19

In-vivo Single Cell Analysis

Photoacoustic lymph

flow cytometry in vivo

- Intra-vital Imaging
- In-vivo Flow Cytometry

Conventional flow cytometry ex vivo

V.P. Zharov group, http://www.mdpi.com/2072-6694/5/4/1691

Cell Sorting

- Bulk Sorting
 - Magnetic
 - Gravity
 - Acoustic
 - •
- FACS
- Tyto/OWL
- DEP sorter
- Other sorters

New Cell Sorting Technologies

Single Cell Sequencing

Laser Capture **DNA** Extraction Gene expression Microdissection Environment OR analysis of Sample FACS single cells from Single Cell OR blood or tissues Organ Isolation Tissue **Microfluidics** SNP/CNV/ CCTCATGGATAGATTAAT CCAGGAGTATACAGAAC Cell Types GTTGCAAGAGAGTATCA AGATACAATACAAGGGT Number of Cells Identification TAAGCCATACCTGAGGG 1 10 100 Sequencing Analysis Sequencina MDA Library https://en.wikipedia.org/wiki/Single_cell_sequencing C. Single-Cell Auto Prep System Any Illumina System

Single Cell Genome Sequencing Workflow

23 Source: http://www.nanostring.com

http://www.genome.duke.edu/cores/microarray/services/fluidigm/

Novel Affinity Reagents

Antibodies

 Antibodies from different species (e.g. Llama 15 kDalton fragments with 10⁻ ⁹M Kd and high stability, potential for intracellular use)

Synthetic affinity reagents

- Aptamers
- Protein scaffolds
- Molecular Imprinted Polymers
- Recombinant antibody fragments

Gene Expression Analysis RNA Flow Cytometry

RNA Probes:

- Detection of specific RNA sequences after hybridization and amplification
- Single copy limit of detection

Figure 4. Assessment of RNA flow cytometry probe multiplexing.

Hanley MB et al. (2013) PLoS ONE 8:e57002

More info: Hanley MB et al. (2013) PLoS ONE 8:e57002

Label Selection

• Brightness

• Detection System

- Spectral Overlap
- Application (surface vs. internal)

Brightness and Separation

Spectral Overlap and Separation

More info: Maecker HT et al. (2004) Cytometry 62A:169-173

Data Analysis

• Manual Gating

• Automated Analysis

More info: Nima Aghaeepour et al. (2013) Nature Methods 10:228ff 27Enrico Lugli, Mario Roederer, Andrea Cossarizza(2010) Cytometry 77A:705ff

Automated Sample preparation

Presently available

- Fully automated sample to result e.g. BC Acquios CL, MACSQuant
- xyz-fluid handling robots e.g. BD SPA or BC Biomek
- Washing by special centrifugation e.g. BD LWA
- Membrane Filtration e.g. MSP FlowCytoPrep

Promising future technologies

- Deterministic lateral displacement
- Acoustic focusing
- Inertial flow

Droplet-based Integrated Bio-Assay System Technology

New Detector-Label Combinations

 New photodetectors extend the available spectrum

> (Si avalanche photodiodes extend detection into the far infrared, Xitogen system))

 New dyes add excitation in the UV, some detection in the IR (Fluorescent polymers, bacteriochlorins, ...)

New Detection Technologies

 High spatial resolution and multi-parameter capability with X-ray / synchrotron radiation fluorescence

(super-high resolution with element labels or direct element imaging)

 Medium resolution, multiparameter mass spectrometric imaging

(CyTOF like element labels, direct metabolite or structural component detection)

- Label-free imaging with Raman (measuring cellular components by their Raman spectra)
- Label-free high resolution NMR imaging

(direct chemical detection)

Ortega R et al (2009) J.R.Soc Interface 6: S649-S658

Schober Y et al. (2012) Anal.Chem. 84, 6293ff

31

Conclusions

• For optimal results use an adequate technology

(flow cytometry has enormous capabilities, but is not always the technology to use e.g. single cell kinetics)

• Understand the limitations of the system

(limits of detection, non-specific binding of reagents, ...)

• Validate results with appropriate controls

Acknowledgements

- Joe Trotter
- Ed Goldberg
- Liping Yu
- Brent Gaylord above all BD Biosciences

Input from companies:

- BD Biosciences
- Miltenyi Biotec
- Beckman Coulter
- Thermo Fisher

• ...

- Martin Buescher, Miltenyi
- Christian Dose, Miltenyi
- Holden Maecker, Stanford
- Bob Hoffman
- Ming Yan
- Maria Jaimes
- Hrair Kirakossian
- .

Contact and URL

Email: diether@desatoya.com Phone: USA-408-658-6074 URL (for presentation and links): http://www.desatoya.com